A3orouyos], PIqAH AIMIN
~ N\ A AN AAAAN NN ~AAAAAAAAAA~AANAAN
UV VYV VY Y U Y VY VY VY

AN AN~ ANAAAAAAAAAAAANAAANA AN
A e N el T T VA S R Vg i A V

AN ~NANAAANANANANAANAAANANN A
AV A VI A AT AV A A VIRV N anah YA T AV A WV
N~~~ "\ A—~A—AAANA N AN A
NV PNV VY NN Y NV N
VA S e A LA VAV A T A VA A VAL TS) VA e
N I VT P LdYYIN/ VN
AAAIA A~ AAAAA AN\ AN
WV IV LU L N\ NN N LN
PAANA ~ANA~NAAA~A AN AN A~
R VA WAVE AV A S g e i VA = VA T el SO L

Contents

Introduction

© 0 N0 01k Wi+

— =
- O

NN DN DNDN = H = = = = e
W= OO N Ok Wi

The language mix

Font Goodies

Grouping

The font name mess

The Bidi Dilemma

Deeply nested notes

Upto ConTgXt MkVI

Backend code

Callbacks

Building paragraphs

Tagged PDF

Including pages

Exporting XML

Optimizations again
Characters with special meanings
Weird examples

Glocal assignments

Handling math: A retrospective
Exporting math

E-books: Old wine in new bottles
Italic correction

Optical optimization

Updating the code base

Just in time

The team

17
33
45
55
59
69
75
83
93
99
115
121
131
141
155
159
165
173
191
205
213
221
247

263

Introduction

We're halfway the development of LuaTgX (mid 2009) and substantial parts
of CoNTgXt have been rewritten using a mixture of Lua and TigX. In another
document, “CoNTgXt MKII-MKIV, the history of LuaTgX 2006-2009”, we have
kept track of how both systems evolved so far!. Here we continue that story
which eventually will end with both systems being stable and more of less
complete in their basic features.

The title of this document needs some explanation, although the symbols on
the cover might give a clue already. In CoNTgXt MKIV, as it is now, we mix
several languages:

e good old TgX: here you will see {} all over the place

e fancy MetaPost: there we use quite some ()

e lean and mean Lua: both {} and () show up a lot there

e unreadable but handy xMmL: immediately recognizable by the use of <>

As we use all of them mixed, you can consider MkIV to be a hybrid system and
just as with hybrid cars, efficiency is part of the concept.

TX LUA
XML ﬂ ConTXt —-| PDF
MetaPost UTILITIES

In this graphic we've given Lua a somewhat different place than the other three
languages. First of all we have Lua inside TEX, which is kind of hidden, but at
the same time we can use Lua to provide whatever extra features we need, es-
pecially when we’ve reached the state where we can load libraries. In a similar
fashion we have utilities (now all written in Lua) that can manage your workflow
or aspects of a run (the mtxrun script plays a central role in this).

Parts of this have been published in usergroup magazines like the Maps, TucBoaT, and con-
ference proceedings of EUROTEX and TUG.

Introduction 3

The mentioned history document was (and still is) a rather good testcase for
LuaTEX and MKIV. We explore some new features and load a lot of fonts, some
really large. This document will also serve that purpose. This is one of the
reasons why we have turned on grid snapping (and occasionally some tracing).

Keeping track of the history of LuaTiX and MkIV in a document serves several
purposes. Of course it shows what has been done. It also serves as a reminder
of why it was done that way. As mentioned it serves as test, both in functionality
and performance, and as such it's always one of the first documents we run
after a change in the code. Most of all this document serves as an extension
to my limited memory. When I look at my source code I often can remember
when and why it was done that way at that time. However, writing it down
more explicitly helps me to remember more and might help users to get some
insight in the developments and decisions made.?

A couple of new features were added to LuaTgX in 2010 but the years 2011
and 2012 were mostly spent on fixing issues and reaching a stable state. In
parallel parts of ConNTEXT were rewritten using Lua and new possibilities have
been explored. Indeed LuaTgX had become pretty stable, especially because
we used it in production. There are still a lot of things on the agenda but
with LuaTEgX 0.75 we have reached yet another milestone: integration of Lua
5.2, exploration of LuaJIT, and the move forward to a version of MetaPost that
supports doubles as numeric type. Luigi Scarso and I also started the SwigLib
project that will make the use of external libraries more easy.

Of course, although I wrote most of the text, this document is as much a re-
flection of what Taco Hoekwater and Hartmut Henkel come up with, but all
errors you find here are definitely mine. Some chapters have been published
in TucBoar, the Maps and other usergroup journals. Some chapters have be-
come manuals, like the one on spreadsheets. I also owe thanks to the ConNTXT
community and those active on the mailing list: it's a real pleasure to see how
fast new features are picked up and how willing to test users are when new
betas show up.

Hans Hagen, Hasselt NL,
September 2009 — December 2012

http://www.luatex.org
http://www.pragma-ade.com

I read a lot and regret that I forget most of what I read so fast. I might as well forget what I
wrote so have some patience with me as I repeat myself occasionally.

4 Introduction

1 The language mix

During the third ConTEgXt conference that ran in parallel to EurdlgX 2009
in The Hague we had several sessions where MkIV was discussed and a few
upcoming features were demonstrated. The next sections summarize some
of that. It's hard to predict the future, especially because new possibilities
show up once LuaTiEX is opened up more, so remarks about the future are not
definitive.

1.1 TgX

From now on, if I refer to TgX in the perspective of LuaTgX I mean “Good Old
TEX”, the language as well as the functionality. Although LuaTgX provides
a couple of extensions it remains pretty close to compatible to its ancestor,
certainly from the perspective of the end user.

As most CoNTgXt users code their documents in the TgX language, this will
remain the focus of MkIV. After all, there is no real reason to abandon it.
However, although CoNTgXt already stimulates users to use structure where
possible and not to use low level TgX commands in the document source, we
will add a few more structural variants. For instance, we already introduced
\startchapter and \startitem in addition to \chapter and \item.

We even go further, by using key/value pairs for defining section titles, book-
marks, running headers, references, bookmarks and list entries at the start
of a chapter. And, as we carry around much more information in the (for TgX
so typical) auxiliary data files, we provide extensive control over rendering the
numbers of these elements when they are recalled (like in tables of contents).
So, if you really want to use different texts for all references to a chapter header,
it can be done:

\startchapter
[label=emcsquare,
title={About $e=mc"2$},
bookmark={einstein},
list={About $e=mc”2$ (Einstein)},
reference={$e=mc”"2%$}1]

. content ...

\stopchapter

The language mix 5

Under the hood, the MKIV code base is becoming quite a mix and once we have
a more clear picture of where we're heading, it might become even more of a
hybrid. Already for some time most of the font handling is done by Lua, and
a bit more logic and management might move to Lua as well. However, as we
want to be downward compatible we cannot go as far as we want (yet). This
might change as soon as more of the primitives have associated Lua functions.
Even then it will be a trade off: calling Lua takes some time and it might not
pay off at all.

Some of the more tricky components, like vertical spacing, grid snapping, bal-
ancing columns, etc. are already in the process of being Luafied and their hy-
brid form might turn into complete Lua driven solutions eventually. Again, the
compatibility issue forces us to follow a stepwise approach, but at the cost of
(quite some) extra development time. But whatever happens, the TgX input
language as well as machinery will be there.

1.2 MetaPost

I never regret integrating MetaPost support in CoNTgXT and a dream came
true when mpLIB became part of LuaTiEX. Apart from a few minor changes in
the way text integrates into MetaPost graphics the user interface in MkIV is
the same as in MKII. Insofar as Lua is involved, this is hidden from the user.
We use Lua for managing runs and conversion of the result to ppr. Currently
generating MetaPost code by Lua is limited to assisting in the typesetting of
chemical structure formulas which is now part of the core.

When defining graphics we use the MetaPost language and not some TiX-like
variant of it. Information can be passed to MetaPost using special macros
(like \MPcolor), but most relevant status information is passed automatically

anyway.

You should not be surprised if at some point we can request information from
TEX directly, because after all this information is accessible. Think of some-
thingw := texdimen(0) ; being expanded at the MetaPost end instead of w :=
\the\dimen® ; being passed to MetaPost from the TX end.

1.3 LUA

What will the user see of Lua? First of all he or she can use this scripting
language to generate content. But when making a format or by looking at the
statistics printed at the end of a run, it will be clear that Lua is used all over
the place.

6 The language mix

So how about Lua as a replacement for the TEX input language? Actually, it is
already possible to make such “CoNTgXt Lua Documents” using MkIV’s built
in functions. Each CoNTgXt command is also available as a Lua function.

\startluacode
context.bTABLE {
framecolor = "blue",
align= "middle",
style = "type",
offset=".5ex",
}
for i=1,10 do
context.bTR()
for i=1,20 do
local r= math.random(99)
if r < 50 then
context.bTD {
background = "color",
backgroundcolor = "blue"
}
context(context.white("%#21",r))
else
context.bTD()
context ("%s#21i",r)
end
context.eTD()
end
context.eTR()
end
context.eTABLE()
\stopluacode

Of course it helps if you know CoNTgXT a bit. For instance we can as well say:

if r < 50 then
context.bTD {

background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",
}
else
context.bTD()
end

context ("%#21",r)

The language mix 7

context.eTD()

And, knowing Lua helps as well, since the following is more efficient:

\startluacode

local colored = {
background = "color",
backgroundcolor = "blue",
foregroundcolor = "white",

}

local basespec = {
framecolor = "blue",

align= "middle",
style = "type",
offset=".5ex",
}
local bTR, eTR context.bTR, context.eTR
local bTD, eTD context.bTD, context.eTD
context.bTABLE (basespec)
for i=1,10 do
bTR()
for i=1,20 do
local r= math.random(99)
bTD((r < 50 and colored) or nil)
context("%s#2i",r)
eTD()
end
eTR()
end
context.eTABLE()
\stopluacode

Since in practice the speedup is negligible and the memory footprint is about
the same, such optimization seldom make sense.

At some point this interface will be extended, for instance when we can use
TEX’s main (scanning, parsing and processing) loop as a so-called coroutine
and when we have opened up more of TigX’s internals. Of course, instead of
putting this in your TgX source, you can as well keep the code at the Lua end.

The script that manages a ConNTgXt run (also called context) will process files

with the cld suffix automatically. You can also force processing as Lua with
the flag --forcecld.® The mtxrun script also recognizes cld files and delegate

8 The language mix

Figure 1.1 The result of the shown
Lua code.

the call to the context script.
context yourfile.cld

But will this replace TgX as an input language? This is quite unlikely because
coding documents in TgX is so convenient and there is not much to gain here.
Of course in a pure Lua based workflow (for instance publishing information
from databases) it would be nice to code in Lua, but even then it's mostly
syntactic sugar, as TgX has to do the job anyway. However, eventually we will
have a quite mature Lua counterpart.

1.4 XML

This is not so much a programming language but more a method of tagging
your document content (or data). As structure is rather dominant in xmr, it is
quite handy for situations where we need different output formats and multiple
tools need to process the same data. It's also a standard, although this does
not mean that all documents you see are properly structured. This in turn
means that we need some manipulative power in CoNTgXT, and that happens
to be easier to do in MkIV than in MKII.

In CoNTgXT we have been supporting xmL for a long time, and in MkIV we made
the switch from stream based to tree based processing. The current implemen-
tation is mostly driven by what has been possible so far but as LuaTigX becomes
more mature, bits and pieces will be reimplemented (or at least cleaned up and
brought up to date with developments in LUATEX).

One could argue that it makes more sense to use xsLt for converting xmL into
something TgX, but in most of the cases that I have to deal with much effort
goes into mapping structure onto a given layout specification. Adding a bit of
xML to TgX mapping to that directly is quite convenient. The total amount of
code is probably smaller and it saves a processing step.

3 Similar methods exist for processing xmL files.

The language mix 9

We’re mostly dealing with education-related documents and these tend to have
a more complex structure than the final typeset result shows. Also, readability
of code is not served with such a split as most mappings look messy anyway
(or evolve that way) due to the way the content is organized or elements get
abused.

There is a dedicated manual for dealing with xmL in MkIV, so we only show a
simple example here. The documents to be processed are loaded in memory
and serialized using setups that are associated to elements. We keep track of
documents and nodes in a way that permits multipass data handling (rather
usual in TgX). Say that we have a document that contains questions. The
following definitions will flush the (root element) questions:

\startxmlsetups xml:mysetups
\xmlsetsetup{#1}{questions}{xml:questions}
\stopxmlsetups
\xmlregistersetup{xml:mysetups}
\startxmlsetups xml:questions
\xmlflush{#1}
\stopxmlsetups
\xmlprocessfile{main}{somefile.xml1}{}
Here the #1 represents the current xmL element. Of course we need more as-
sociations in order to get something meaningful. If we just serialize then we
have mappings like:

\xmlsetsetup{#1}{question|answer}{xml:*}

So, questions and answers are mapped onto their own setup which flushes
them, probably with some numbering done at the spot.

In this mechanism Lua is sort of invisible but quite busy as it is responsible
for loading, filtering, accessing and serializing the tree. In this case TigX and
Lua hand over control in rapid succession.

You can hook in your own functions, like:

\xmlfilter{#1}{(wording|feedback]|choice)/function(cleanup)}

In this case the function cleanup is applied to elements with names that match

10 The language mix

one of the three given.*

Of course, once you start mixing in Lua in this way, you need to know how we
deal with xmL at the Lua end. The following function show how we calculate
scores:

\startluacode
function xml.functions.totalscore(root)
local n =0
for e in xml.collected(root,"/outcome") do
if xml.filter(e,"action[text()="'add']") then
local m = xml.filter(e,"xml:///score/text()")
n =n + (tonumber(m or 0) or 0)
end
end
tex.write(n)
end
\stopluacode

You can either use such a function in a filter or just use it as a TigX macro:

\startxmlsetups xml:question
\blank
\xmlfirst{#1}{wording}
\startitemize
\xmlfilter{#1}{/answer/choice/command(xml:answer:choice)}
\stopitemize
\endgraf
score: \xmlfunction{#1}{totalscore}
\blank
\stopxmlsetups

\startxmlsetups xml:answer:choice
\startitem
\xmUflush{#1}
\stopitem
\stopxmlsetups

The filter variant is like this:

This example is inspired by one of our projects where the cleanup involves sanitizing (highly
invalid) HTML data that is embedded as a CDATA stream, a trick to prevent the xmL file to be
invalid.

The language mix 11

\xmlfilter{#1}{./function('totalscore')}

So you can take your choice and make your source look more xMmL-ish, Lua-like
or TgX-wise. A careful reader might have noticed the peculiar xml:// in the
function code. When used inside MKIV, the serializer defaults to TgX so results
are piped back into TgX. This prefix forced the regular serializer which keeps
the result at the Lua end.

Currently some of the xMmL related modules, like MATHML and handling of ta-
bles, are really a mix of TigX code and Lua calls, but it makes sense to move
them completely to Lua. One reason is that their input (formulas and table
content) is restricted to non-TgX anyway. On the other hand, in order to be
able to share the implementation with TgX input, it also makes sense to stick
to some hybrid approach. In any case, more of the calculations and logic will
move to Lua, while TEX will deal with the content.

A somewhat strange animal here is xsL-Fo. We do support it, but the MKII
implementation was always somewhat limited and the code was quite complex.
So, this needs a proper rewrite in MkIV, which will happen indeed. It's mostly a
nice exercise of hybrid technology but until now I never really needed it. Other
bits and pieces of the current xmL goodies might also get an upgrade.

There is already a bunch of functions and macros to filter and manipulate xmL
content and currently the code involved is being cleaned up. What direction
we go also depends on users’ demands. So, with respect to XML you can expect

more support, a better integration and an upgrade of some supported xmL
related standards.

1.5 Tools

Some of the tools that ship with ConTEXT are also examples of hybrid usage.
Take this:

mtxrun --script server --auto

On my machine this reports:

MTXrun | running at port: 31415

MTXrun | document root: c:/data/develop/context/lua

MTXrun | main index file: unknown

MTXrun | scripts subpath: c:/data/develop/context/Llua

MTXrun | context services: http://localhost:31415/mtx-server-ctx-startup.lua

12 The language mix

The mtxrun script is a Lua script that acts as a controller for other scripts, in
this case mtx-server.lua that is part of the regular distribution. As we use
LuaTgX as a Lua interpreter and since LuaTigX has a socket library built in, it
can act as a web server, limited but quite right for our purpose.®

The web page that pops up when you enter the given address lets you currently
choose between the CoNTEXT help system and a font testing tool. In figure 1.2
you seen an example of what the font testing tool does.

ConTeXt Font Tester: Zapfino Extra LT Pro (zapfinoextraltpro.otf)

Figure 1.2 An example of using the font tester.

Here we have LuaTgX running a simple web server but it’s not aware of having
TigX on board. When you click on one of the buttons at the bottom of the screen,
the server will load and execute a script related to the request and in this case
that script will create a TgX file and call LuaTEX with CoNTgXT to process that
file. The result is piped back to the browser.

You can use this tool to investigate fonts (their bad and good habits) as well as
to test the currently available OpPENTYPE functionality in MkIV (bugs as well as
goodies).

So again we have a hybrid usage although in this case the user is not confronted
with Lua and/or TgX at all. The same is true for the other goodie, shown
in figure 1.3. Actually, such a goodie has always been part of the CoNTEXT

5 This application is not intentional but just a side effect.

The language mix 13

distribution but it has been rewritten in Lua.

french

german

italian

persian

romanian

source: core-rul.tex mode: lua mode

Figure 1.3 An example of a help screen for a command.

The CoNTgXrt user interface is defined in an xmL file, and this file is used for sev-
eral purposes: initializing the user interfaces at format generation time, type-
setting the formal command references (for all relevant interface languages),
for the wiki, and for the mentioned help goodie.

Using the mix of languages permits us to provide convenient processing of
documents that otherwise would demand more from the user than it does now.
For instance, imagine that we want to process a series of documents in the so-
called Epub format. Such a document is a zipped file that has a description
and resources. As the content of this archive is prescribed it's quite easy to
process it:

context --ctx=x-epub.ctx yourfile.epub

This is equivalent to:

texlua mtxrun.lua --script context --ctx=x-epub.ctx yourfile.epub

So, here we have LuaTgX running a script that itself (locates and) runs a script
context. That script loads a CoNTgXrt job description file (with suffix ctx). This

file tells what styles to load and might have additional directives but none of
that has to bother the end user. In the automatically loaded style we take care

14 The language mix

of reading the xmL files from the zipped file and eventually map the embedded
HTML like files onto style elements and produce a ppr file. So, we have Lua
managing a run and MkIV managing with help of Lua reading from zip files and
converting xmL into something that TgX is happy with. As there is no standard
with respect to the content itself, i.e. the rendering is driven by whatever kind
of structure is used and whatever the css file is able to map it onto, in practice
we need an additional style for this class of documents. But anyway it's a good
example of integration.

1.6 The future

Apart from these language related issues, what more is on the agenda? To
mention a few integration related thoughts:

e At some point I want to explore the possibility to limit processing to just
one run, for instance by doing trial runs without outputting anything but
still collecting multipass information. This might save some runtime in
demanding workflows especially when we keep extensive font loading and
image handling in mind.

e Related to this is the ability to run MkIV as a service but that demands
that we can reset the state of LuaTiEX and actually it might not be worth
the trouble at all given faster processors and disks. Also, it might not save
much runtime on larger jobs.

e More interesting can be to continue experimenting with isolating parts of
CoNTgXrt in such a way that one can construct a specialized subset of func-
tionality. Of course the main body of code will always be loaded as one
needs basic typesetting anyway.

Of course we keep improving existing mechanisms and improve solutions using
a mix of TgX and Lua, using each language (and system) for what it can do best.

The language mix 15

16 The language mix

2 Font Goodies

2.1 Introduction

The Oriental TgX project is one of the first and more ambitious users of LUATEX.
A major undertaking in this project is the making of a rather full features
and complex font for typesetting Arabic. As the following text will show some
Arabic, you might get the impression that I'm an expert but be warned that
I'm far from that. But as Idris compensates this quite well the team has a lot
of fun in figuring out how to achieve our goals using OpPENTYPE technology in
combination with LuaTgX and MKIV. A nice side effect of this is that we end up
with some neat tricks in the CoNTEXT core.

Before we come to some of these goodies, an example of Arabic is given that
relates quite well to the project. It was first used at the eurdligX 2009 meeting.
Take the following 6 shapes:

JJ\QL“g'
1T w a t 1 kh

With these we can make the name LuaTgX and as we use a nice script we can
forget about the lowered E. Putting these characters in sequence is not enough
as Arabic typesetting has to mimick the subtle aspects of scribes.

In Latin scripts we have mostly one-to-one and many-to-one substitutions. Th-
ese can happen in sequence which in in practice boils down to multiple passes
over the stream of characters. In this process sometimes surrounding char-
acters (or shapes) play a role, for instance ligatures are not always wanted
and their coming into existence might depend on neighbouring characters. In
some cases glyphs have to be (re)positioned relative to each other. While in
Latin scripts the number of substitutions and positioning is not that large but
in advanced Arabic fonts it can be pretty extensive.

With OpeNTYPE we have some machinery available, so we try to put as much
logic in the font as possible. However, in addition we have some dedicated
optimizing routines. The whole process is split into a couple if stages.

The so called First-Order Analysis puts a given character into isolated, initial,
middle, or final state. Next, the Second-Order Analysis looks at the charac-
ters and relates this state to what characters precede or succeed it. Based on
that state we do character substitutions. There can be multiple analysis and

Font Goodies 17

replacements in sequence. We can do some simple aesthetic stretching and
additional related replacements. We need to attach identity marks and vowels
in proper but nice looking places. In most cases we're then done. Contrary to
other fonts we don’t use many ligatures but compose characters.

The previous steps already give reasonable results and implementing it also
nicely went along with the development of LuaTgX and CoNTgXT MKIV. Cur-
rently we're working on extending and perfecting the font to support what
we call Third-Order Contextual Analysis. This boils down to an interplay be-
tween the paragraph builder and additional font features. In order to get pleas-
ing spacing we apply further substitutions, this time with wider or narrower
shapes. When this is done we need to reattach identity marks and vowels.
Optionally we can apply Hz like stretching as a finishing touch but so far we
didn’t follow that route yet.

So, let’'s see how we can typeset the word LuaTgX in Arabic using some of these
techniques.

"

2
no order (khitaw [u]]) CL;Q\)J

A2

first order C:s \‘}5
A2

second order c:.} \jj
w 2

second order (Jiim-stacking) é \jj
w 2

minimal stretching .é) \jJ
A2

maximal stretching (level 3) .é) ‘ g 5

18 Font Goodies

w 2
chopped letter khaa (for e.g. underlining) ﬁ’ \‘)j

As said, this font is quite complex in the sense that it has many features and
associated lookups. In addition to the usual features we have stylistic and jus-
tification variants. As these are not standardized (after all, each font can have
its own look and feel and associated treatments) we store some information in
the goodies files that ship with this font.

feature meaning
js01 Raawide
js02 Yaawide
js03 Kaafwide

js04 Nuunwide
js05 Kaafwide Nuunwide Siinwide Baawide
js06 final Haa wide

js07 thin Miim

js08 short Miim

js09 wide Siin

js10 thuluth-style initial Haa, final Miim, MRw mf
jsll level-1 stretching

js12 level-2 stretching

js13 level-3 stretching

jsl4a final Alif

js15 hooked final Alif

jsl6 aesthetic medial Faa/Qaaf

jsl7 fancy isol Haa after Daal, Raa, and Waaw

js18 Laamwide, alternate substitution

js19 level-4 stretching, only siin and Hhaa for basmalah
js20 level-5 stretching, only siin and Hhaa for basmalah

js21 Haa.final alt2
ss01 Allah, Muhammad
$s02 ss01 + Allah final

ss03 level-1 stack over Jiim, initial entry only

ss04 level-1 stack over Jiim, initial/medial entry

ss05 multi-level Jiim stacking, initial/medial entry

ss06 aesthetic Faa/Qaaf for FJ mm, FJ mf connection

ss07 initial-entry stacking over Haa

5508 initial/medial stacking over Haa, minus HM mf strings
ss09 initial/medial Haa stacking plus HM mf strings

5510 basic dipped Miim, initial-entry B S-stack over Miim

ssll full dipped Miim, initial-entry B S-stack over Miim

Font Goodies 19

ssl2
ssl3
ssl4
ssl5
ss16
ssl7
5518
ss19
5520
ss21
5522
ss23
ss24
ss25
Ss26
ss27
ss28
ss29
ss30
ss31
ss32
ss33
ss34
ss35
ss36
ss37
5538
ss39
ss40
ss41l
5542
ss43
ss44
ss45
ss46
ss47
ss48
ss49
ss50
ss51
5552
ss53
ss54
ss55

XBM im initial-medial entry B S-stack over Miim
full initial-medial entry B S-stacked Miim
initial entry, stacked Laam on Miim

full stacked Laam-on-Miim

initial entry, stacked Ayn-on-Miim

full stacked Ayn-on-Miim

LMJ im already contained in ss03--05, may remove
LM im

KLM m, sloped Miim

KLM i mm/LM mm, sloped Miim

filled sloped Miim

LM mm, non-sloped Miim

BR i mf, BN i mf

basic LH im might merge with ss24

full Yaa.final special strings: BY if, BY mf, LY mf
basic thin Miim.final

full thin Miim.final to be moved to jsnn
basic short Miim.final

full short Miim.final to be moved to jsnn
basic Raa.final strings: JR and SR

basic Raa.final strings: JR, SR, and BR
TtR to be moved to jsnn

AyR style also available in jsnn

full Kaaf contexts

full Laam contexts

Miim-Miim contexts

basic dipped Haa, B SH mm

full dipped Haa, B.S LH i mm Mf

aesthetic dipped medial Haa

high and low Baa strings

diagonal entry

initial alternates

hooked final alif

BMA f

BM mm alt, for JBM combinations
Shaddah-<kasrah> combo

Auto-sukuun

No vowels

Shaddah/MaaddahHamzah only

No Skuun

No Waslah

No Waslah

chopped finals

idgham-tanwin

20 Font Goodies

It is highly unlikely that a user will remember all these features, which is why
there will be a bunch of predefined combinations. These are internalized as

follows:

featureset
default

maximal stretching

medium stretching

minimal stretching

definitions

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true jsl6=true
kern=true language=dflt mark=true medi=true
mkmk=true mode=node number=108 rlig=true
salt=true script=arab ssOQl=true ss03=true
ss@7=true ssl@=true ssl2=true ssl5=true
sslo=true ssl19=true ss24=true ss25=true
ss26=true ss27=true ss3l=true ss34=true
ss35=true ss36=true ss37=true ss38=true
ssd4l=true ss42=true ss43=true ss55=true
analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
js09=true jsl3=true jsl6=true kern=true
language=dflt mark=true medi=true mkmk=true
mode=node number=112 rlig=true salt=true
script=arab ss0l=true ss03=true ss@7=true
sslO=true ssl2=true ssl5=true ssl6=true
ssl9=true ss24=true ss25=true ss26=true
ss27=true ss3l=true ss34=true ss35=true
ss3b=true ss37=true ss38=true ss4l=true
ssd42=true ss43=true ss55=true

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
jsl2=true jsl6=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=113 rlig=true salt=true script=arab
ssOl=true ss03=true ssO7=true sslO=true
ssl2=true ssl5=true ssl6=true ssl9=true
ss24=true ss25=true ss26=true ss27=true
ss31l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ss4l=true ss42=true
ss43=true ss55=true

analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js03=true
jsll=true jsl6=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=110 rlig=true salt=true script=arab
ssOl=true ss03=true ssO7=true sslO=true
ssl2=true ssl5=true ssl6=true ssl9=true

Font Goodies

21

ss24=true ss25=true ss26=true ss27=true
ss31l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ss4l=true ss42=true
ss43=true ss55=true

shrink analyze=true anum=true calt=true ccmp=true
curs=true fina=true flts=true init=true
jsle=true jsl7=true kern=true language=dflt
mark=true medi=true mkmk=true mode=node
number=111 rlig=true salt=true script=arab
ssOl=true ss03=true ss05=true ss06=true
ss@7=true ss09=true sslO=true ssll=true
ssl2=true ssl5=true ssl6=true ssl9=true
ss24=true ss25=true ss26=true ss27=true
ss3l=true ss34=true ss35=true ss36=true
ss37=true ss38=true ssd4l=true ss42=true
ss43=true ss55=true

wide all analyze=true anum=true calt=true ccmp=true
curs=true fina=true init=true js05=true
js09=true jsll=true jsl2=true jsl3=true
jslée=true kern=true 1language=dflt mark=true
medi=true mkmk=true mode=node number=109
rlig=true salt=true script=arab ss0l=true
ssO03=true ssO7=true sslO=true ssl2=true
sslb=true ssl6=true ss19=true ss24=true
ss25=true ss26=true ss27=true ss3l=true
ss34=true ss35=true ss36=true ss37=true
ss38=true ssd4l=true ss42=true ss43=true
ss55=true

2.2 Color

One of the objectives of the oriental TigX project is to bring color to typeset
Arabic. When Idris started making samples with much manual intervention it
was about time to figure out if it could be supported by a bit of Lua code.

As the colorization concerns classes of glyphs (like vowels) this is something
that can best be done after all esthetics have been sorted out. Because things
like coloring are not part of font technology and because we don’t want to mis-
use the OpPENTYPE feature mechanisms for that, the solution lays in an extra
file that describes these goodies.

22 Font Goodies

M)M&«UT (3";
Ay A Ll sl
Ay A Ll sl

The second and third of these three lines have colored vowels and identity
marks. So how did we get the colors? There are actually two mechanisms
involved in this:

e we need to associate colorschemes with classed of glyphs
e we need to be able to turn on and off coloring

The first is done by loading goodies and selecting a colorscheme:

\definefontfeature
[husayni-colored]
[goodies=husayni,

colorscheme=default,
featureset=default]

Turning on and off coloring is done with two commands (we might provide a
proper environment for this) as shown in:

\start
\definedfont[husayni*husayni-colored at 72pt]
\righttoleft
\resetfontcolorscheme J slost 1Je Jsds sJsds \par
\setfontcolorscheme [1]J’slost 1Jé Jsds sdsds \crlf

Font Goodies 23

\setfontcolorscheme [2]J°slost 1Jo Jsdé sdsds \crlf
\stop

If you look closely at the feature definition you’ll notice that we also choose a
default featureset. For most (latin) fonts the regular feature definitions are con-
venient, but for fonts that are used for Arabic there are preferred combinations
of features as there can be many.

Currently the font we use here has the following colorschemes:

colorscheme numbers
default 1 2 3 4 5

2.3 The goodies file

In principle a goodies files can contain anuy data that makes sense but in order
to be useable some entries have a prescribed structure. A goodies file looks as
follows:

return {
name = "husayni",
version = "1.00",
comment = "Goodies that complement the Husayni font by Idris Samawi Hamid.",
author = "Idris Samawi Hamid and Hans Hagen",
featuresets = {
default = {
key = value, <table>,

b

b
stylistics = {
key = value,
b
colorschemes = {
default = {
[11 = {
"glyph a.one", "glyph b.one",
b

24 Font Goodies

We already saw the list of special features and these are defined in the stylistics
stable. In this document, that list was typeset using the following (hybrid) code:

\startluacode
local goodies = fonts.goodies.load("husayni")
local stylistics = goodies and goodies.stylistics
if stylistics then
local col, row, type = context.NC, context.NR, context.type
context.starttabulate { "|l|pl|" }
col() context("feature") col() context("meaning") col() row()
for feature, meaning in table.sortedpairs(stylistics) do
col() type(feature) col() type(meaning) col() row()
end
context.stoptabulate()
end
\stopluacode

The table with colorscheme that we showed is generated with:

colorscheme numbers
default 1 2 3 4 5

In a similar fashion we typeset the featuresets:

\startluacode
local goodies = fonts.goodies.load("husayni")
local featuresets = goodies and goodies.featuresets
if featuresets then
local col, row, type = context.NC, context.NR, context.type
context.starttabulate { "|l|pl|" }
col() context("featureset") col() context("definitions") col() row()
for featureset, definitions in table.sortedpairs(featuresets) do
col() type(featureset) col()
for k, v in table.sortedpairs(definitions) do
type(string.format("%s=%s",k,tostring(v)))
context.quad()
end
col() row()
end
context.stoptabulate()
end
\stopluacode

The unprocessed featuresets table can contain one or more named sets and

Font Goodies 25

each set can be a mixture of tables and key value pairs. Say that we have:

default = {
kern = "yes", { ss01 = "yes" }, { ss02 = "yes" }, "mark"

}

Given the previous definition, the order of processing is as follows.

. { ss01

1 "yes" }
2. { ss02 = "yes" }
3. mark (set to "yes")
4. kern = "yes"

So, first we process the indexed part if the list, and next the hash. Already set
values are not set again. The advantage of using a Lua table is that you can
simplify definitions. Before we return the table we can define local variables,
like:

local one = { ssO1l = "yes" }
local two = { ss02 = "yes" }
local pos = { kern = "yes", mark = "yes" }

and use them in:

default = {
one, two, pos

That way we we can conveniently define all kind of interesting combinations
without the need for many repetitive entries.

The colorsets table has named subtables that are (currently) indexed by num-
ber. Each number is associated with a color (at the TgX end) and is coupled to
a list of glyphs. As you can see here, we use the name of the glyph. We prefer
this over an index (that can change during development of the font). We cannot
use UNICcODE points as many such glyphs are just variants and have no unique
code.

2.4 Optimizing Arabic

The ultimate goal of the Oriental TigX project is to improve the look and feel of
a paragraph. Because TgX does a pretty good job on breaking the paragraph

26 Font Goodies

into lines, and because complicating the paragraph builder is not a good idea,
we finally settled on improving the lines that result from the par builder. This
approach is rather close to what scribes do and the advanced Husayni font
provides features that support this.

In principle the current optimizer can replace character expansion but that
would slow down considerably. Also, for that we first have to clean up the
experimental Lua based par builder.

After several iterations the following approach was chosen.

e We typeset the paragraph with an optimal feature set. In our case this is
husayni-default.

e Next we define two sets of additional features: one that we can apply to
shrink words, and one that does the opposite.

e When the line has a badness we don’t like, we either stepwise shrink words
or stretch them, depending on how bad things are.

The set that takes care of shrinking is defined as:

\definefontfeature
[shrink]
[husayni-default]
[flts=yes,jsl7=yes,ss05=yes,ssll=yes,ss06=yes,ss09=yes]

Stretch has a few more variants:

\definefontfeature
[minimal stretching]
[husayni-default]
[jsll=yes, js03=yes]

\definefontfeature
[medium stretching]
[husayni-default]
[js12=yes, jsO5=yes]

\definefontfeature
[maximal stretching]
[husayni-default]
[jsl3=yes, js05=yes, js09=yes]

\definefontfeature
[wide alll]
[husayni-default]

Font Goodies 27

[jsll=yes,jsl2=yes,jsl3=yes, js05=yes, js09=yes]
Next we define a font solution:

\definefontsolution
[FancyHusayni]
[goodies=husayni,
less=shrink,
more={minimal stretching,medium stretching,maximal stretching,wide all}]

Because these featuresets relate quite closely to the font design we don’'t use
this way if defining but put the definitions in the goodies file:

featuresets = { -- here we don't have references to featuresets
default = {
default,
5
minimal stretching = {
default, jsil = yes, js03 = yes,
5
medium stretching = {
default, jsi2=yes, jsOb=yes,
1
maximal stretching= {
default, jsl13 = yes, js05 = yes, js09 = yes,

5
wide all = {
default, jslil = yes, js12 = yes, js13 = yes, js05 = yes, js09 = yes,
5
shrink = {
default, flts = yes, js17 = yes, ss0b = yes, ssll = yes, ss06 = yes, ss09 = yes,
5

1
solutions = { -- here we have references to featuresets, so we use strings!
experimental = {
less = { "shrink" },
more = { "minimal stretching", "medium stretching", "maximal stretching", "wide all" },

Now the definition looks much simpler:
\definefontsolution

[FancyHusayni]
[goodies=husayni,

28 Font Goodies

solution=experimental]

I want some funny text (complete with translation). Actually I want all examples
translated.

In the following example the yellow words are stretched and the green ones are
shrunken.®

\definedfont[husayni*husayni-default at 24pt]

% todo: factor ivm grid, so the next line looks hackery:
\expanded{\setuplocalinterlinespace[line=\the\dimexpr2\lineheight]}
\setfontsolution[FancyHusayni]% command will change
\enabletrackers[builders.paragraphs.solutions.splitters.colors]
\righttoleft \getbuffer[sample] \par
\disabletrackers[builders.paragraphs.solutions.splitters.colors]
\resetfontsolution

5 Jorlell Gy Gl 1y sl Olabs y sl iy 1 S
I Vi sl
Ol G il gy 5Bl aio bugs U slilas W 2o] 536 oS3
Wyl ST & A1 5 Ul 2] Lungd 5 3, S UV Lilis 0 G313 3,500
o Ol o) iy Ol by b i s s 5 UL R oy Gy e,
P BECABTE IRt el skl

USle y G @ch}@i@‘ o o bl S5 AR
This mechanism is somewhat experimental as is the (user) interface. It is also
rather slow compared to normal processing. There is room for improvement but
I will do that when other components are more stable so that simple variants

(that we can use here) can be derived.

When criterium O used above is changed into for instance 5 processing is faster.
When you enable a preroll processing is more time consuming. Examples of

6 Make sure that the paragraph is finished (for instance using \par before resetting it.)

Font Goodies 29

settings are:

\setupfontsolutions[method={preroll,normal},criterium=2]
\setupfontsolutions[method={preroll, random},criterium=5]
\setupfontsolutions[method=reverse,criterium=8]
\setupfontsolutions[method=random,criterium=2]

Using a preroll is slower because it first tries all variants and then settles for

the best; otherwise we process the first till the last solution till the criterium
is satisfied.

2.5 Protrusion and expansion

There are two entries in the goodies file that relate to advanced parbuilding:
protrusions and expansions.

protrusions = {
vectors = {
pure = {
[0x002C] = { 0, 1}, -- comma
[0x002E] = { 0, 1 }, -- period
}
}
}

These vectors are similar to the ones defined globally but the vectors defined
in a goodie file are taken instead when present.

2.6 Filenames and properties

As filenames and properties of fonts are somewhat of an inconsistent mess, we
can use the goodies to provide more information:

files = {
name = "antykwapoltawskiego", -- shared
list = {
["AntPoltLtCond-Regular.otf"] = {
-- name = "antykwapoltawskiego",
style = "regular",
weight = "light",

30 Font Goodies

width = "condensed",

Internally this will become a lookup tree so that we can have a predictable
specifier:

\definefont[MyFontA][antykwapoltawskiego-bold-italic]
\definefont[MyFontB] [antykwapoltawskiego-normal-italic-condensed]
\definefont[MyFontC][antykwapoltawskiego-light-regular-semicondensed]

Of course one needs to load the goodies. One way to force that is:
\loadfontgoodies[antykwapoltawskiego]

The Antykwa Poltawskiego family is rather large and provides all kind of com-
binations.

antykwapoltawskiego-bold-regular-normal-normal
antykwapoltawskiego-bold-italic-normal-normal
antykwapoltawskiego-normal-italic-normal-normal
antykwapoltawskiego-normal-regular-normal-normal
antykwapoltawskiego-bold-regular-condensed-normal
antykwapoltawskiego-bold-italic-condensed-normal
antykwapoltawskiego-normal-italic-condensed-normal
antykwapoltawskiego-normal-regular-condensed-normal
antykwapoltawskiego-bold-regular-expanded-normal
antykRwapoltawskiego-bold-italic-expanded-normal
antyRwapoltawskiego-normal-italic-expanded-normal
antykwapoltawskiego-normal-regular-expanded-normal
antykwapoltawskiego-medium-regular-normal-normal
antykwapoltawskiego-medium-italic-normal-normal
antykwapoltawskiego-light-italic-normal-normal
antykwapoltawskiego-light-regular-normal-normal
antykwapoltawskiego-medium-regular-condensed-normal
antykwapoltawskiego-medium-italic-condensed-normal
antykwapoltawskiego-light-italic-condensed-normal
antkwapoltawskiego-light-regular-condensed-normal
antykwapoltawskiego-medium-regular-expanded-normal
antykRwapoltawsRkiego-medium-italic-expanded-normal

Font Goodies 31

antykwapoltawskiego-light-italic-expanded-normal
antykwapoltawskiego-light-regular-expanded-normal
antykwapoltawskiego-medium-regular-semicondensed-normal
antykwapoltawskiego-mediumv-italic-semicondensed-normal
antykwapoltawskiego-light-italic-semicondensed-normal
antykwapoltawskiego-light-regular-semicondensed-normal
antykwapoltawskiego-medium-regular-semiexpanded-normal
antykwapoltawskiego-medium-italic-semiexpanded-normal
antykwapoltawskiego-light-italic-semiexpanded-normal
antykwapoltawskiego-light-regular-semiexpanded-normal
antykwapoltawskiego-bold-regular-semicondensed-normal
antykwapoltawskiego-bold-italic-semicondensed-normal
antykwapoltawskiego-normal-italic-semicondensed-normal
antykwapoltawskiego-normal-regular-semicondensed-normal
antykwapoltawskiego-bold-regular-semiexpanded-normal
antykwapoltawskiego-bold-italic-semiexpanded-normal
antykRwapoltawskiego-normal-italic-semiexpanded-normal
antykwapoltawskiego-normal-regular-semiexpanded-normal

This list is generated with:

\usemodule[fonts-goodies]
\showfontgoodiesfiles[name=antykwapoltawskiego]

32 Font Goodies

3 Grouping

3.1 Variants

After using TigX for a while you get accustomed to one of its interesting concepts:
grouping. Programming languages like PascaL and MobpuLa have keywords
begin and end. So, one can say:

if test then begin
print bold("test 1")
print bold("test 2")
end

Other languages provide a syntax like:
if test {

print bold("test 1")
print bold("test 2")

So, in those languages the begin and end and/or the curly braces define a
‘group’ of statements. In TgX on the other hand we have:

test \begingroup \bf test \endgroup test

Here the second test comes out in a bold font and the switch to bold (basically
a different font is selected) is reverted after the group is closed. So, in TgX
grouping deals with scope and not with grouping things together.

In other languages it depends on the language of locally defined variables are
visible afterwards but in TigX they’re really local unless a \global prefix (or one
of the shortcuts) is used.

In languages like Lua we have constructs like:

for i=1,100 do
local j =i + 20

end

Here j is visible after the loop ends unless prefixed by local. Yet another
example is MetaPost:

Grouping 33

begingroup ;
save n ; numeric n ; n := 10 ;

endgroup ;

Here all variables are global unless they are explicitly saved inside a group. This
makes perfect sense as the resulting graphic also has a global (accumulated)
property. In practice one rarely needs grouping, contrary to TgX where one
really wants to keep changes local, if only because document content is so
unpredictable that one never knows when some change in state happens.

In principle it is possible to carry over information across a group boundary.
Consider this somewhat unrealistic example:

\begingroup
\leftskip 10pt
\begingroup

\advance\leftskip 10pt
\endgroup
\endgroup

How do we carry the advanced leftskip over the group boundary without using
a global assignment which could have more drastic side effects? Here is the
trick:

\begingroup
\leftskip 10pt
\begingroup

\advance\leftskip 10pt
\expandafter
\endgroup

\expandafter \leftskip \the\leftskip
\endgroup

This is typical the kind of code that gives new users the creeps but normally

they never have to do that kind of coding. Also, that kind of tricks assumes
that one knows how many groups are involved.

34 Grouping

3.2 Implication

What does this all have to do with LuaTgX and MkIV? The user interface of
CoNTgXrt provide lots of commands like:

\setupthis[style=bold]
\setupthat[color=green]

Most of them obey grouping. However, consider a situation where we use Lua
code to deal with some aspect of typesetting, for instance numbering lines or
adding ornamental elements to the text. In ConTgXTt we flag such actions with
attributes and often the real action takes place a bit later, for instance when a
paragraph or page becomes available.

A comparable pure TgX example is the following:
{test test \bf test \leftskiplOpt test}

Here the switch to bold happens as expected but no leftskip of 10pt is applied.
This is because the set value is already forgotten when the paragraph is actually
typeset. So in fact we’d need:

{test test \bf test \leftskiplOpt test \par}
Now, say that we have:
{test test test \setupflag[option=1] \flagnexttext test}

We flag some text (using an attribute) and expect it to get a treatment where
option 1 is used. However, the real action might take place when TgX deals with
the paragraph or page and by that time the specific option is already forgotten
or it might have gotten another value. So, the rather natural TgX grouping does
not work out that well in a hybrid situation.

As the user interface assumes a consistent behaviour we cannot simply make
these settings global even if this makes much sense in practice. One solution
is to carry the information with the flagged text i.e. associate it somehow in the
attribute’s value. Of course, as we never know in advance when this informa-
tion is used, this might result in quite some states being stored persistently.

A side effect of this ‘problem’ is that new commands might get suboptimal user
interfaces (especially inheritance or cloning of constructs) that are somewhat
driven by these ‘limitations’. Of course we may wonder if the end user will
notice this.

Grouping 35

To summarize this far, we have three sorts of grouping to deal with:

TEX's normal grouping model limits its scope to the local situation and nor-
mally has only direct and local consequences. We cannot carry information
over groups.

Some of TgX’s properties are applied later, for instance when a paragraph
or page is typeset and in order to make ‘local’ changes effective, the user
needs to add explicit paragraph ending commands (like \par or \page).

Features dealt with asynchronously by Lua are at that time unaware of
grouping and variables set that were active at the time the feature was trig-
gered so there we need to make sure that our settings travel with the feature.
There is not much that a user can do about it as this kind of management
has to be done by the feature itself.

It is the third case that we will give an example of in the next section. We leave
it up to the user if it gets noticed on the user interface.

3.3 An example

A group of commands that has been reimplemented using a hybrid solution is
underlining or more generic: bars. Just take a look at the following examples
and try to get an idea on how to deal with grouping. Keep in mind that:

Colors are attributes and are resolved in the backend, so way after the para-
graph has been typeset.

Overstrike is also handled by an attribute and gets applied in the backend
as well, before colors are applied.

Nested overstrikes might have different settings.

An overstrike rule either inherits from the text or has its own color setting.

First an example where we inherit color from the text:

\definecolor[myblue] [b=.75]
\definebar[myoverstrike][overstrike][color=]

Test \myoverstrike{%

Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}

Test}

Test

36 Grouping

Test TestFestFestTest-Test Test

Because color is also implemented using attributes and processed later on we
can access that information when we deal with the bar.

The following example has its own color setting:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]
\definebar[myoverstrike] [overstrike][color=myred]

Test \myoverstrike{%
Test \myoverstrike{\myblue
Test \myoverstrike{Test}
Test}
Test}
Test

Test Test-Fest-Fest=Test-Test Test
See how we can color the levels differently:

\definecolor[myblue] [b=.75]
\definecolor[myred] [r=.75]
\definecolor[mygreen] [g=.75]

\definebar[myoverstrike:1][overstrike] [color=myblue]
\definebar[myoverstrike:2][overstrike] [color=myred]
\definebar[myoverstrike:3][overstrike][color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%
Test \myoverstrike{Test}
Test}
Test}
Test

Test TestFestFestTest-Test Test
Watch this:
\definecolor[myblue] [b=.75]

\definecolor[myred] [r=.75]
\definecolor[mygreen] [g=.75]

Grouping 37

\definebar[myoverstrike][overstrike] [max=1,dy=0,0ffset=.5]
\definebar[myoverstrike:1][myoverstrike] [color=myblue]
\definebar[myoverstrike:2][myoverstrike][color=myred]
\definebar[myoverstrike:3][myoverstrike] [color=mygreen]

Test \myoverstrike{%
Test \myoverstrike{%
Test \myoverstrike{Test}
Test}
Test}
Test

Test Fest-Test-Test Test-Test Test

It this the perfect user interface? Probably not, but at least it keeps the imple-
mentation quite simple.

The behaviour of the MkKIV implementation is roughly the same as in MKII,
although now we specify the dimensions and placement in terms of the ratio
of the x-height of the current font.

Test \overstrike{Test \overstrike{Test \overstrike{Test} Test} Test} Test
\blank
Test \underbar {Test \underbar {Test \underbar {Test} Test} Test} Test
\blank
Test \overbar {Test \overbar {Test \overbar {Test} Test} Test} Test
\blank
Test \underbar {Test \overbar {Test \overstrike{Test} Test} Test} Test
\blank

Test Test FestFestTestTest Test

Test Test Test Test Test Test Test

Test Test Test Test Test Test Test
Test Test Test Test Test Test Test

As an extra this mechanism can also provide simple backgrounds. The normal
background mechanism uses MetaPost and the advantage is that we can use
arbitrary shapes but it also carries some limitations. When the development of
LuaTgEX is a bit further along the road I will add the possibility to use MetaPost
shapes in this mechanism.

38 Grouping

Before we come to backgrounds, first take a look at these examples:

\startbar[underbar] \input zapf \stopbar \blank
\startbar[underbars] \input zapf \stopbar \blank

Coming back to the use of typefaces in electronic publishing: many of the new
typographers receive their knowledge and information about the rules of ty-
pography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much ba-
sic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely—praised program, called up on the
screen, will make everything automatic from now on.

Coming back to the use of typefaces in electronic publishing: many of the new
typographers receive their knowledge and information about the rules of ty-
pography from books, from computer magazines or the instruction manuals
which they get with the purchase of a PC or software. There is not so much ba-
sic instruction, as of now, as there was in the old days, showing the differences
between good and bad typographic design. Many people are just fascinated by
their PC’s tricks, and think that a widely—praised program, called up on the
screen, will make everything automatic from now on.

First notice that it is no problem to span multiple lines and that hyphenation
is not influenced at all. Second you can see that continuous rules are also
possible. From such a continuous rule to a background is a small step:

\definebar
[backbar]
[offset=1.5, rulethickness=2.8,color=blue,
continue=yes,order=background]

\definebar
[forebar]
[offset=1.5, rulethickness=2.8,color=blue,
continue=yes,order=foreground]

The following example code looks messy but this has to do with the fact that
we want properly spaced sample injection.

from here

\startcolor[white]%
\startbar[backbar]%

Grouping 39

\input zapf
\removeunwantedspaces
\stopbar
\stopcolor
\space till here
\blank
from here
\startbar[forebar]%
\input zapf
\removeunwantedspaces
\stopbar
\space till here

iyonlie@IComing back to the use of typefaces in electronic publishing: man

of the new typographers receive their knowledge and information about the
rules of typography from books, from computer magazines or the instruction|
manuals which they get with the purchase of a PC or software. There is no

so much basic instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many people are|
just fascinated by their PC’s tricks, and think that a widely—praised program,
called up on the screen, will make everything automatic from now on.gsliSi&s

from here

till here

Watch how we can use the order to hide content. By default rules are drawn
on top of the text.

Nice effects can be accomplished with transparencies:
\definecolor [tblue] [b=.5,t=.25,a=1]

\setupbars [backbar] [color=tblue]

\setupbars [forebar] [color=tblue]

We use as example:

from here {\white \backbar{test test}

40 Grouping

\backbar {nested nested} \backbar{also also}} till here
from here {\white \backbar{test test

\backbar {nested nested} also also}} till here
from here {\white \backbar{test test
\backbar {nested nested} also also}} till here
from here till here from here
till here from here till here

The darker nested variant is just the result of two transparent bars on top of
each other. We can limit stacking, for instance:

\setupbars[backbar] [max=1]
\setupbars|[forebar][max=1]

This gives

from here till here from here
till here from here till here

There are currently some limitations that are mostly due to the fact that we
use only one attribute for this feature and a change in value triggers another
handling. So, we have no real nesting here.

The default commands are defined as follows:

\definebar[overstrike] [method=0,dy= 0.4,o0ffset= 0.5]
\definebar[underbar] [method=1,dy=-0.4,0ffset=-0.3]
\definebar[overbar] [method=1,dy= 0.4,0ffset= 1.8]

\definebar[overstrikes] [overstrike] [continue=yes]
\definebar[underbars] [underbar] [continue=yes]
\definebar[overbars] [overbar] [continue=yes]

As the implementation is rather non-intrusive you can use bars almost every-
where. You can underbar a whole document but equally well you can stick to
fooling around with for instance formulas.
\definecolor [tred] [r=.5,t=.25,a=1]
\definecolor [tgreen] [g=.5,t=.25,a=1]
\definecolor [tblue] [b=.5,t=.25,a=1]

\definebar [mathred] [backbar] [color=tred]

Grouping 41

\definebar [mathgreen] [backbar] [color=tgreen]
\definebar [mathblue] [backbar] [color=tblue]

\startformula
\mathred{e} = \mathgreen{\white mc} ~ {\mathblue{\white e}}
\stopformula

We get:

We started this chapter with some words on grouping. In the examples you see
no difference between adding bars and for instance applying color. However
you need to keep in mind that this is only because behind the screens we keep
the current settings along with the attribute. In practice this is only noticeable
when you do lots of (local) changes to the settings. Take:

{test test test \setupbars[color=red] \underbar{test} test}

This results in a local change in settings, which in turn will associate a new
attribute to \underbar. So, in fact the following underbar becomes a different
one than previous underbars. When the page is prepared, the unique attribute
value will relate to those settings. Of course there are more mechanisms where
such associations take place.

3.4 More to come

Is this all there is? No, as usual the underlying mechanisms can be used for
other purposes as well. Take for instance inline notes:

According to the wikipedia this is the longest English word:
pneumonoultramicroscopicsilicovolcanoconiosis~\shiftup {other long

words are pseudopseudohypoparathyroidism and
flocci-nauci-nihili-pili-fication}. Of course in languages like Dutch and
German we can make arbitrary long words by pasting words together.

This will produce:
According to the wikipedia this is the longest English word: pneumonoultra-
microscopicsilicovolcanoConiosis other long words are pseudopseudohypoparathyroidism and flocci-

naucinihilipilification — f course in languages like Dutch and German we can make
arbitrary long words by pasting words together.

42 Grouping

I wonder when users really start using such features.

3.5 Summary

Although under the hood the MkKIV bar commands are quite different from their
MKII counterparts users probably won’t notice much difference at first sight.
However, the new implementation does not interfere with the par builder and
other mechanisms. Plus, it is configurable and it offers more functionality.
However, as it is processed rather delayed, side effects might occur that are
not foreseen.

So, if you ever notice such unexpected side effects, you know where it might
result from: what you asked for is processed much later and by then the cir-
cumstances might have changed. If you suspect that it relates to grouping
there is a simple remedy: define a new bar command in the document pream-
ble instead of changing properties mid-document. After all, you are supposed
to separate rendering and content in the first place.

Grouping 43

44 Grouping

4 The font name mess

4.1 Introduction

When TgX came around it shipped with its own fonts. At that moment the TX
font universe was a small and well known territory. The ‘only’ hassle was that
one needed to make sure that the right kind of bitmap was available for the
printer.

When other languages than English came into the picture things became more
complex as now fonts instances in specific encodings showed up. After a couple
of years the by then standardised TiX distributions carried tens of thousands
of font files. The reason for this was simple: TgX fonts could only have 256
characters and therefore there were quite some encodings. Also, large cJxk fonts
could easily have hundreds of metric files per font. Distributions also provide
metrics for commercial fonts although I could never use them and as a result
have many extra metric files in my personal trees (generated by TgXronT).”

At the input side many problems related to encodings were solved by UNICODE.
So, when the more Unicope aware fonts showed up, it looked like things would
become easier. For instance, no longer were choices for encodings needed.
Instead one had to choose features and enable languages and scripts and so
the problem of the multitude of files was replaced by the necessity to know
what some font actually provides. But still, for the average user it can be seen
as an improvement.

A rather persistent problem remained, especially for those who want to use dif-
ferent fonts and or need to install fonts on the system that come from elsewhere
(either free or commercial): the names used for fonts. You may argue that
modern TgX engines and macro packages can make things easier, especially
as one can call up fonts by their names instead of their filenames, but actually
the problem has worsened. With traditional TgX you definitely get an error
when you mistype a filename or call for a font that is not on your system. The
more modern TgX’s macro packages can provide fallback mechanisms and you
can end up with something you didn’t ask for.

For years one of the good things of TigX was its stability. If we forget about
changes in content, macro packages and/or hyphenation patterns, documents
could render more or less the same for years. This is because fonts didn’t
change. However, now that fonts are more complex, bugs gets fixed and thereby

Distributions like TigXLive have between 50.000 and 100.000 files, but derivatives like the
ConNTEXT minimals are much smaller.

The font name mess 45

results can differ. Or, if you use platform fonts, your updated operating system
might have new or even different variants. Or, if you access your fonts by
fontname, a lookup can resolve differently.

The main reason for this is that fontnames as well as filenames of fonts are
highly inconsistent across vendors, within vendors and platforms. As we have
to deal with this matter, in MKIV we have several ways to address a font: by
filename, by fontname, and by specification. In the next sections I will describe
all three.

4.2 Method 1: file

The most robust way to specify what fonts is to be used is the filename. This
is done as follows:

\definefont[SomeFont] [file:lmmonol0O-regular]

A filename lookup is case insensitive and the name you pass is exact. Of course
the file: prefix (as with any prefix) can be used in font synonyms as well. You
may add a suffix, so this is also valid:
\definefont[SomeFont][file:lmmonol0-reqular.otf]

By default ConTgXt will first look for an OpENTYPE font so in both cases you
will get such a font. But how do you know what the filename is? You can for
instance check it out with:

mtxrun --script font --list --file --pattern="lm*mono"

This reports some information about the file, like the weight, style, width, font-

name, filename and optionally the subfont id and a mismatch between the
analysed weight and the one mentioned by the font.

latinmodernmonolight light normal normal Immonolt10regular Immonolt10-regular.otf
latinmodernmonoproplight light italic normal Immonoproplt10oblique Immonoproplt10-oblique.otf
latinmodernmono normal normal normal Immono9regular Immono9-regular.otf
latinmodernmonoprop normal italic normal Immonopropl0oblique Immonoprop10-oblique.otf
latinmodernmono normal italic normal Immono10italic 1mmonol10-italic.otf
latinmodernmono normal normal normal Immono8regular Immono8-regular.otf
latinmodernmonolightcond light italic condensed Immonoltcond10oblique Immonoltcond10-oblique.otf
latinmodernmonolight light italic normal Immonolt10oblique Immonolt10-oblique.otf
latinmodernmonolightcond light normal condensed ImmonoltcondlOregular Immonoltcond10-regular.otf
latinmodernmonolight bold italic normal Immonolt10boldoblique Immonolt10-boldoblique.otf
latinmodernmonocaps normal italic normal Immonocaps10oblique Immonocaps10-oblique.otf

46 The font name mess

latinmodernmonoproplight
latinmodernmonolight
latinmodernmonoproplight
latinmodernmonoslanted
latinmodernmono
latinmodernmonocaps
latinmodernmonoprop
latinmodernmono
latinmodernmonoproplight

bold
bold
bold
normal
normal
normal
normal
normal
light

italic
normal
normal
normal
normal
normal
normal
normal
normal

normal Immonoproplt10boldoblique Immonoproplt10-boldoblique.otf
normal Immonolt10bold Immonolt10-bold.otf

normal Immonoproplt10bold Immonoproplt10-bold.otf

normal 1mmonoslant10regular 1mmonoslant10-regular.otf
normal 1mmonol12regular 1mmonol12-regular.otf

normal Immonocaps10regular Immonocaps10-regular.otf
normal ImmonoproplOregular Immonopropl0-regular.otf
normal Immonol0regular Immono10-regular.otf

normal Immonoproplt10regular Immonoproplt10-regular.otf

4.3 Method 1: name

Instead of lookup by file, you can also use names. In the font database we store
references to the fontname and fullname as well as some composed names from
information that comes with the font. This permits rather liberal naming and
the main reason is that we can more easily look up fonts. In practice you will
use names that are as close to the filename as possible.

mtxrun --script font --list --name --pattern="lmmono*regular" --all

This gives on my machine:
Immono10regular Immonol0regular
Immono12regular Immono12regular
1mmono8regular Immono8regular
Immono9regular Immono9regular
Immonocaps10regular Immonocaps10regular
Immonolt10regular Immonolt10regular
Immonoltcondi0regular lmmonoltcondiOregular
Immonopropl0regular ImmonoproplOregular
Immonoproplt10regular lmmonopropltiOregular
Immonoslant1i0regular lmmonoslantlOregular

Immono10-regular.otf
Immono12-regular.otf
1mmono8-regular.otf
1mmono9-regular.otf
Immonocaps10-regular.otf
Immonolt10-regular.otf
Immonoltcond10-regular.otf
Immonopropl0-regular.otf
Immonoproplt10-regular.otf
Immonoslant10-regular.otf

It does not show from this list but with name lookups first OpENTYPE fonts are
checked and then Typel. In this case there are TypeEl variants as well but they
are ignored. Fonts are registered under all names that make sense and can be
derived from its description. So:

mtxrun --script font --list --name --pattern="latinmodern*mono" --all
will give:
latinmodernmono Immono9regular Immono9-regular. otf

latinmodernmonocaps
latinmodernmonocapsitali

latinmodernmonocapsnormal

Immonocaps10oblique Imnonocaps10-oblique.otf
C Immonocaps10oblique Immonocaps10-oblique.otf
Immonocaps10oblique Immonocaps10-oblique.otf

The font name mess 47

latinmodernmonolight Immonolt10regular 1mmonolt10-regular.otf
latinmodernmonolightbold Immonolt10boldoblique 1mmonolt10-boldoblique.otf
latinmodernmonolightbolditalic Immonolt10boldoblique Immonolt10-boldoblique.otf
latinmodernmonolightcond Immonoltcond10oblique Immonoltcond10-oblique.otf
latinmodernmonolightconditalic 1mmonoltcond10oblique Immonoltcond10-oblique.otf
latinmodernmonolightcondlight Immonoltcond10oblique Immonoltcond10-oblique.otf
latinmodernmonolightitalic Immonolt10oblique Imnonolt10-oblique.otf
latinmodernmonolightlight Immonolt10regular Imnonolt10-regular.otf
latinmodernmononormal Immono9regular Imnono9-regular.otf
latinmodernmonoprop Immonopropl0oblique Immonoprop10-oblique.otf
latinmodernmonopropitalic Immonopropl0oblique Immonoprop10-oblique.otf
latinmodernmonoproplight Immonoproplt10oblique Immonoproplt10-oblique.otf

latinmodernmonoproplightbold
latinmodernmonoproplightbolditalic

Immonoproplt10boldoblique
Immonoproplt10boldoblique

Immonoproplt10-boldoblique.otf
Immonoproplt10-boldoblique.otf

latinmodernmonoproplightitalic Immonoproplt10oblique Immonoproplt10-oblique.otf
latinmodernmonoproplightlight Immonoproplt10oblique Imnonoproplt10-oblique.otf
latinmodernmonopropnormal Immonoprop10oblique Immonoprop10-oblique.otf

latinmodernmonoslanted Immonoslant10regular Immonoslant10-regular.otf
latinmodernmonoslantednormal Immonoslant10regular 1mmonoslant10-regular.otf

Watch the 9 point version in this list. It happens that there are 9, 10 and 12
point regular variants but all those extras come in 10 point only. So we get a
mix and if you want a specific design size you really have to be more specific.
Because one font can be registered with its fontname, fullname etc. it can show
up more than once in the list. You get what you ask for.

With this obscurity you might wonder why names make sense as lookups. One
advantage is that you can forget about special characters. Also, Latin Modern
with its design sizes is probably the worst case. So, although for most fonts a
name like the following will work, for Latin Modern it gives one of the design
sizes:

\definefont[SomeFont] [name:latinmodernmonolightbolditalic]

But this is quite okay:

\definefont[SomeFont] [name: lmmonoltl0Oboldoblique]

So, in practice this method will work out as well as the file method but you can
best check if you get what you want.

4.4 Method 1: spec

We have now arrived at the third method, selecting by means of a specification.
This time we take the familyname as starting point (although we have some

48 The font name mess

fallback mechanisms):

\definefont[SomeSerif] [spec:times]
\definefont[SomeSerifBold] [spec:times-bold]
\definefont[SomeSerifItalic] [spec:times-italic]

\definefont[SomeSerifBoldItalic][spec:times-bold-italic]
The patterns are of the form:

spec:name-weight-style-width

spec:name-weight-style

spec:name-style

When only the name is used, it actually boils down to:
spec:name-normal-normal-normal

So, this is also valid:

spec:name-normal-italic-normal
spec:name-normal-normal-condensed

Again we can consult the database:
mtxrun --script font --list --spec lmmono-normal-italic

This prints the following list. The first column is the familyname, the fifth
column the fontname:

latinmodernmono normal italic normal lmmonolOitalic Immono10-italic.otf
latinmodernmonoprop normal italic normal ImmonoproplQoblique lmmonopropl0-oblique.otf
1mmono10 normal italic normal ImmonolOitalic Imtti110.afm
Immonoprop10 normal italic normal lmmonoproplOoblique Ilmvttol0.afm
Immonocaps10 normal italic normal lmmonocapslOoblique Imtcsol0.afm

latinmodernmonocaps normal italic normal ImmonocapsiOoblique ImmonocapsiO-oblique.otf

Watch the OpenNTYPE and TypEl mix. As we're just investigating here, the
lookup looks at the fontname and not at the familyname. At the TgX end you
use the familyname:

\definefont[SomeFont] [spec:latinmodernmono-normal-italic-normal]

So, we have the following ways to access this font:

The font name mess 49

\definefont[SomeFont][file: lmmonol0-italic]
\definefont[SomeFont] [file:lmmonolO-italic.otf]
\definefont[SomeFont][name:lmmonolOitalic]
\definefont[SomeFont][spec:latinmodernmono-normal-italic-normal]

As OpeNTYPE fonts are prefered over Typel there is not much chance of a mixup.

As mentioned in the introduction, qualifications are somewhat inconsistent.
Among the weight we find: black, bol, bold, demi, demibold, extrabold, heavy,
light, medium, mediumbold, regular, semi, semibold, ultra, ultrabold and ul-
tralight. Styles are: ita, ital, italic, roman, regular, reverseoblique, oblique and
slanted. Examples of width are: book, cond, condensed, expanded, normal
and thin. Finally we have alternatives which can be anything.

When doing a lookup, some normalizations takes place, with the default always
being ‘normal’. But still the repertoire is large:

helveticaneue medium normal normal helveticaneuemedium Helveticalleue.ttc index: 0
helveticaneue bold normal condensed helveticaneuecondensedbold HelveticaNeue.ttc index: 1
helveticaneue black normal condensed helveticaneuecondensedblack Helveticalleue.ttc index: 2
helveticaneue ultralight italic thin helveticaneueultralightitalic HelveticaNeue.ttc index: 3
helveticaneue ultralight normal thin helveticaneueultralight HelveticaNeue.ttc index: 4
helveticaneue light italic normal helveticaneuelightitalic HelveticaNeue.ttc index: 5
helveticaneue light normal normal helveticaneuelight HelveticaNeue.ttc index: 6
helveticaneue bold italic normal helveticaneuebolditalic Helveticalleue.ttc index: 7
helveticaneue normal italic normal helveticaneueitalic Helveticalleue.ttc index: 8
helveticaneue bold normal normal helveticaneuebold Helveticalleue.ttc index: 9
helveticaneue normal normal normal helveticaneue HelveticaNeue.ttc index: 10
helveticaneue normal normal condensed helveticaneuecondensed hle .afm conflict: roman
helveticaneue bold normal condensed helveticaneueboldcond hlbc .afm

helveticaneue black normal normal helveticaneueblackcond hlzc .afm conflict: normal
helveticaneue black normal normal helveticaneueblack hlbl .afm conflict: normal
helveticaneue normal normal normal helveticaneueroman 1t 50259.afm conflict: regular

4.5 The font database

In MkIV we use a rather extensive font database which in addition to bare
information also contains a couple of hashes. When you use CoNTgXT MKIV
and install a new font, you have to regenerate the file database. In a next TgX
run this will trigger a reload of the font database. Of course you can also force
a reload with:

mtxrun --script font --reload

50 The font name mess

As a summary we mention a few of the discussed calls of this script:

mtxrun --script font --list somename (== --pattern=tsomenamex)

mtxrun --script font --list --name
mtxrun --script font --list --name

mtxrun --script font —-list -—spec
mtxrun --script font --list ——spec
mtxrun --script font --list —-spec
mtxrun --script font --list --spec
mtxrun --script font --list --spec

mtxrun --script font --list --file
mtxrun --script font --list --file

somename
--pattern=*somenamex*

somename
somename-bold-italic

--pattern=+*somename*

--filter="fontname=somename"
--filter="familyname=somename,weight=bold,style=italic,width=condensed"

somename
--pattern=*somename*

The lists shown in before depend on what fonts are installed and their version.
They might not reflect reality at the time you read this.

4.6 Interfacing

Regular users never deal with the font database directly. However, if you write
font loading macros yourself, you can access the database from the TgX end.
First we show an example of an entry in the database, in this case TeXGyreTer-

mes Regular.

{
designsize = 100,
familyname = "texgyretermes",
filename = "texgyretermes-regular.otf",
fontname = "texgyretermesregular",
fontweight = "regular",
format = "otf",
fullname = "texgyretermesregular",
maxsize = 200,
minsize = 50,
rawname = "TeXGyreTermes-Regular",
style = "normal",
variant = "",
weight = "normal",
width = "normal",

}

Another example is Helvetica Neue Italic:

The font name mess 51

designsize = 0,

familyname = "helveticaneue",
filename = "HelveticaNeue.ttc",
fontname = "helveticaneueitalic",

fontweight = "book",

format = "ttc",

fullname = "helveticaneueitalic",
maxsize = 0,

minsize = 0,

rawname = "Helvetica Neue Italic",
style = "italic",

subfont = 8,

variant = "",

weight = "normal",

width = "normal",

As you can see, some fields can be meaningless, like the sizes. As using the
low level TgX interface assumes some knowledge, we stick here to an example:

\def\TestLookup#1%

{\dolookupfontbyspec{#1}

pattern: #1, found: \dolookupnoffound

\blank

\dorecurse {\dolookupnoffound} {%
\recurselevel:~\dolookupgetkeyofindex{fontname}{\recurselevel}%
\quad

}%

\blank}

\TestLookup{familyname=helveticaneue}
\TestLookup{familyname=helveticaneue,weight=bold}
\TestLookup{familyname=helveticaneue,weight=bold,style=italic}

You can use the following commands:

\dolookupfontbyspec {key=value list}

\dolookupnoffound
\dolookupgetkeyofindex {key}{index}
\dolookupgetkey {key}

First you do a lookup. After that there can be one or more matches and you

52 The font name mess

can access the fields of each match. What you do with the information is up
to yourself.

4.7 A few remarks

The fact that modern TgX engines can access system fonts is promoted as a
virtue. The previous sections demonstrated that in practice this does not really
free us from a name mess. Of course, when we use a really small TgX tree, and
system fonts only, there is not much that can go wrong, but when you have
extra fonts installed there can be clashes.

We're better off with filenames than we were in former times when operating
systems and media forced distributors to stick to 8 characters in filenames.
But that does not guarantee that today’s shipments are more consistent. And
as there are still some limitations in the length of fontnames, obscure names
will be with us for a long time to come.

The font name mess 53

54 The font name mess

5 The Bidi Dilemma

Here I will introduce a few concepts of bidirectional typesetting. While LuaTgX
does a lot automatically, this does not mean that you get a proper bidirectional
layout for free. We distinguish a few cases:

e verbatim as used in manuals
e simulating a text editor
e typesetting of text

In addition to this we distinguish two document layouts:

e predominantly left—to—right with some right—to—left snippets
e predominantly right—to—left with some left—to—right snippets

In both cases explicit choices have to be made when defining the layout, pro-
gramming the style, and coding the content. In this chapter I will stick to
verbatim.

In verbatim mode we normally use a monospaced font and no interference with
features is to be expected. You get what you've keyed in. Because verbatim is
used for illustrative purposes, we need to have predictable output. This is why
we have to control the position of the linenumbers as well as the alignment
explicitly.

\definetyping [XXtyping] [numbering=line]
\definetyping [RLtyping] [align=r21,numbering=1line]
\definetyping [LRtyping] [align=12r,numbering=1line]

We use these definitions in the following example:

\startLRtyping
At the left!
At the left!
\stopLRtyping

\startRLtyping
At the right!
At the right!
\stopRLtyping

\startalignment[12r]
\startXXtyping

The Bidi Dilemma 55

N =

N =

At the left!
At the left!
\stopXXtyping
\stopalignment

\startalignment[r21]
\startXXtyping

At the right!

At the right!
\stopXXtyping
\stopalignment

However, we can have a bit more control over the position of the line numbers.
As linenumbers are added in a later stage we need to define additional line
number classes for this. We show four relevant positions of linenumbers. What
setting you use depends on the predominant direction of your document as well
as what you want to demonstrate.

\definetyping [RLtypingLEFT] [align=r21,numbering=1line]
\definetyping [LRtypingLEFT] [align=12r,numbering=L1line]

\setuplinenumbering [RLtypingLEFT] [location=left]
\setuplinenumbering [LRtypingLEFT] [location=left]

\startLRtypingLEFT
At the left!

At the left!
\stopLRtypingLEFT

\startRLtypingLEFT
At the right!
At the right!
\stopRLtypingLEFT

When locationis set to left, the line numbers will always be in the left margin,
no matter what the text direction is.

At the left!
At the left!

Ithgir eht tA
I'thgir eht tA

56 The Bidi Dilemma

From this it follows that when location is set to right, the line numbers will
always be in the right margin.

\definetyping [RLtypingRIGHT] [align=r21l,numbering=1line]
\definetyping [LRtypingRIGHT] [align=12r,numbering=1line]

\setuplinenumbering [RLtypingRIGHT] [location=right]
\setuplinenumbering [LRtypingRIGHT] [location=right]

\startLRtypingRIGHT
At the left!

At the left!
\stopLRtypingRIGHT

\startRLtypingRIGHT
At the right!
At the right!
\stopRLtypingRIGHT

Again, the text direction is not influencing the placement.

At the left!
At the left!

Ithgir eht tA
I'thgir eht tA

The next two cases do obey to the text direction. When set to begin, the location
will be at the beginning of the line.

\definetyping [RLtypingBEGIN] [align=r21,numbering=line]
\definetyping [LRtypingBEGIN] [align=12r,numbering=1line]

\setuplinenumbering [RLtypingBEGIN] [location=begin]
\setuplinenumbering [LRtypingBEGIN] [location=begin]

\startLRtypingBEGIN
At the left!
At the left!
\stopLRtypingBEGIN

\startRLtypingBEGIN

At the right!
At the right!

The Bidi Dilemma 57

N =

—

\stopRLtypingBEGIN

When typesetting a paragraph from right to left, the beginning of the line is at
the right margin.

1 At the left!
2 At the left!

I'thgir eht tA
Ithgir eht tA 2

Consequently we get the opposite result when we set location to end.

\definetyping [RLtypingEND] [align=r21,numbering=1line]
\definetyping [LRtypingEND] [align=12r,numbering=line]

\setuplinenumbering [RLtypingEND] [location=end]
\setuplinenumbering [LRtypingEND] [location=end]

\startLRtypingEND
At the left!
At the left!
\stopLRtypingEND

\startRLtypingEND
At the right!
At the right!
\stopRLtypingEND

This time we get complementary results:

At the left!
At the left!

N =

I'thgir eht tA
Ithgir eht tA

It will be clear that when we are writing a manual where we mix example code
with real right to left text some care goes into setting up the verbatim en-
vironments. And this is just one of the aspects you have to deal with in a
bidirectional document layout.

58 The Bidi Dilemma

6 Deeply nested notes

6.1 Introduction

One of the mechanisms that is not on a users retina when he or she starts using
TeXis ‘inserts’. An insert is material that is entered at one point but will appear
somewhere else in the output. Footnotes for instance can be implemented
using inserts. You create a reference symbol in the running text and put note
text at the bottom of the page or at the end of a chapter or document. But as
you don’'t want to do that moving around of notes yourself TigX provides macro
writers with the inserts mechanism that will do some of the housekeeping.
Inserts are quite clever in the sense that they are taken into account when TgX
splits off a page. A single insert can even be split over two or more pages.

Other examples of inserts are floats that move to the top or bottom of the
page depending on requirements and/or available space. Of course the macro
package is responsible for packaging such a float (for instance an image) but by
finally putting it in an insert TgX itself will attempt to deal with accumulated
floats and help you move kept over floats to following pages. When the page
is finally assembled (in the output routine) the inserts for that page become
available and can be put at the spot where they belong. In the process TgX has
made sure that we have the right amount of space available.

However, let's get back to notes. In CoNTgXt we can have many variants of
them, each taken care of by its own class of inserts. This works quite well, as
long as a note is visible for TgX which means as much as: ends up in the main
page flow. Consider the following situation:

before \footnote{the note} after

When the text is typeset, a symbol is placed directly after the word ‘before’ and
the note itself ends up at the bottom of the page. It also works when we wrap
the text in an horizontal box:

\hbox{before \footnote{the note} after}

But it fails as soon as we go further:

\hbox{\hbox{before \footnote{the note} after}}

Here we get the reference but no note. This also fails:

\vbox{before \footnote{the note} after}

Deeply nested notes 59

Can you imagine what happens if we do the following?

\starttabulate
\NC knuth \NC test \footnote{knuth} \input knuth \NC \NR
\NC tufte \NC test \footnote{tufte} \input tufte \NC \NR
\NC ward \NC test \footnote{ward} \input ward \NC \NR
\stoptabulate

This mechanism uses alignments as well as quite some boxes. The paragraphs
are nicely split over pages but still appear as boxes to TgX which make inserts
invisible. Only the three symbols would remain visible. But because in Con-
TXT we know when notes tend to disappear, we take some provisions, and
contrary to what you might expect the notes actually do show up. However,
they are flushed in such a way that they end up on the page where the table
ends. Normally this is no big deal as we will often use local notes that end up
at the end of the table instead of the bottom of the page, but still.

The mechanism to deal with notes in CoNTEXT is somewhat complex at the
source code level. To mention a few properties we have to deal with:

e Notes are collected and can be accessed any time.

e Notes are flushed either directly or delayed.

e Notes can be placed anywhere, any time, perhaps in subsets.
e Notes can be associated to lines in paragraphs.

e Notes can be placed several times with different layouts.

So, we have some control over flushing and placement, but real synchronization
between for instance table entries having notes and the note content ending up
on the same page is impossible.

In the LuaTgX team we have been discussing more control over inserts and we
will definitely deal with that in upcoming releases as more control is needed for
complex multi-column document layouts. But as we have some other priorities
these extensions have to wait.

As a prelude to them I experimented a bit with making these deeply buried
inserts visible. Of course I use Lua for this as TgX itself does not provide the
kind of access we need for this kind of of manipulations.

6.2 Deep down inside

Say that we have the following boxed footnote. How does that end up in LUATEX?

60 Deeply nested notes

\vbox{a\footnote{b}c}

Actually it depends on the macro package but the principles remain the same.
In LuaTgX 0.50 and the CoNTgXT version used at the time of this writing we get
(nested) linked list that prints as follows:

<node 26 < 862 > nil : vlist 0>
<node 401 < 838 > 507 : hlist 1>

<node 30 < 611 > 580 : whatsit 6>
<node 611 < 580 > 493 : hlist 0>
<node 580 < 493 > 653 : glyph 256>
<node 493 < 653 > 797 : penalty 0>
<node 653 < 797 > 424 : kern 1>

<node 797 < 424 > 826 : hlist 2>
<node 445 < 563 > nil : hlist 2>
<node 420 < 817 > 821 : whatsit 35>
<node 817 < 821 > nil : glyph 256>
<node 507 < 826 > 1272 : kern 1>

<node 826 < 1272 > 1333 : glyph 256>
<node 1272 < 1333 > 830 : penalty 0>
<node 1333 < 830 > 888 : glue 15>
<node 830 < 888 > nil : glue 9>

<node 838 < 507 > nil : ins 131>

The numbers are internal references to the node memory pool. Each line rep-
resents a node:

<node prev_index < index > next index : type subtype>

The whatsits carry directional information and the deeply nested hlist is the
note symbol. If we forget about whatsits, kerns and penalties, we can simplify
this listing to:

<node 26 < 862 > nil : vlist 0>
<node 401 < 838 > 507 : hlist 1>
<node 580 < 493 > 653 : glyph 256>
<node 797 < 424 > 826 : hlist 2>
<node 445 < 563 > nil : hlist 2>
<node 817 < 821 > nil : glyph 256>
<node 826 < 1272 > 1333 : glyph 256>
<node 838 < 507 > nil : ins 131>

So, we have a vlist (the \vbox), which has one line being a hlist. Inside we
have a glyph (the ‘a’) followed by the raised symbol (the ‘1) and next comes the

Deeply nested notes 61

second glyph (the ‘b’). But watch how the insert ends up at the end of the line.
Although the insert will not show up in the document, it sits there waiting to
be used. So we have:

<node 26 < 862 > nil : vlist 0>
<node 401 < 838 > 507 : hlist 1>
<node 838 < 507 > nil : ins 131>

but we need:

<node 26 < 862 > nil : vlist 0>
<node 401 < 838 > 507 : hlist 1>
<node 838 < 507 > nil : ins 131>

Now, we could use the fact that inserts end up at the end of the line, but as
we need to recursively identify them anyway, we cannot actually use this fact
to optimize the code.

In case you wonder how multiple inserts look like, here is an example:
\vbox{a\footnote{b}\footnote{c}d}
This boils down to:
<node 26 < 1324 > nil : vlist 0>
<node 401 < 1348 > 507 : hlist 1>
<node 1348 < 507 > 457 : ins 131>

<node 507 < 457 > nil : ins 131>

In case you wonder what more can end up at the end, vertically adjusted ma-
terial (\vadjust) as well as marks (\mark) also get that treatment.

\vbox{a\footnote{b}\vadjust{c}\footnote{d}e\mark{f}}
As you see, we start with the line itself, followed by a mixture of inserts and
vertically adjusted content (that will be placed before that line). This trace also

shows the list 2 levels deep.

<node 26 < 1324 > nil : vlist 0>

<node 401 < 1348 > 507 : hlist 1>
<node 1348 < 507 > 862 : ins 131>
<node 507 < 862 > 240 : hlist 1>
<node 862 < 240 > 2288 : ins 131>
<node 240 < 2288 > nil : mark 0>

62 Deeply nested notes

Currently vadjust nodes have the same subtype as an ordinary hlist but in
LuaTgX versions beyond 0.50 they will have a dedicated subtype.

We can summarize the pattern of one ‘line’ in a vertical list as:
[hlist][insert|mark]|vadjust]*[penalty|glue]+

In case you wonder what happens with for instance specials, literals (and other
whatits): these end up in the hlist that holds the line. Only inserts, marks and
vadjusts migrate to the outer level, but as they stay inside the vlist, they are
not visible to the page builder unless we're dealing with the main vertical list.
Compare:

this is a regular paragraph possibly with inserts and they
will be visible as the lines are appended to the main
vertical list \par

with:

but \vbox {this is a nested paragraph where inserts will
stay with the box} and not migrate here \par

So much for the details; let’'s move on the how we can get around this phenom-
enon.

6.3 Some LUATEX magic

The following code is just the first variant I made and ConNTgXt ships with
a more extensive variant. Also, in CoNTgXrt this is part of a larger suite of
manipulative actions but it does not make much sense (at least not now) to
discuss this framework here.

We start with defining a couple of convenient shortcuts.

local hlist
local vlist
local ins

node.id('hlist"')
node.id('vlist')
node.id('ins"')

We can write a more compact solution but splitting up the functionality better
shows what we're doing. The main migration function hooks into the callback
build page. Contrary to other callbacks that do phases in building lists and
pages this callback does not expect the head of a list as argument. Instead, we
operate directly on the additions to the main vertical list which is accessible as

Deeply nested notes 63

tex.lists.contrib head.
local deal with inserts -- forward reference

local function migrate inserts(where)
local current = tex.lists.contrib head
while current do
local id = current.id
if id == vlist or id == hlist then
current = deal with inserts(current)
end
current = current.next
end
end

callback.register('buildpage filter',migrate inserts)

So, effectively we scan for vertical and horizontal lists and deal with embedded
inserts when we find them. In ConNTgXt the migratory function is just one of
the functions that is applied to this filter.

We locate inserts and collect them in a list with first and last as head and
tail and do so recursively. When we have run into inserts we insert them after
the horizontal or vertical list that had embedded them.

local locate -- forward reference

deal with inserts = function(head)
local h, first, last = head.list, nil, nil
while h do
local id = h.id
if id == vlist or id == hlist then
h, first, last = locate(h,first,last)
end
h = h.next
end
if first then
local n = head.next
head.next = first
first.prev = head
if n then
last.next = n
n.prev = last

64 Deeply nested notes

end
return last
else
return head
end
end

The locate function removes inserts and adds them to a new list, that is passed
on down in recursive calls and eventually is returned back to the caller.

locate = function(head, first, last)
local current = head
while current do
local id = current.id
if id == vlist or id == hlist then
current.list, first, last = locate(current.list,first,last)
current = current.next
elseif id == ins then
local insert = current
head, current = node.remove(head,current)
insert.next = nil
if first then
insert.prev = last
last.next = insert
else
insert.prev = nil
first = insert

end
last = insert
else
current = current.next
end
end

return head, first, last
end

As we can encounter the content several times in a row, it makes sense to mark
already processed inserts. This can for instance be done by setting an attribute.
Of course one has to make sure that this attribute is not used elsewhere.

if not node.has attribute(current,8061) then

node.set attribute(current,8061,1)
current = deal with inserts(current)

Deeply nested notes 65

end

or integrated:

local has attribute
local set attribute

node.has attribute
node.set attribute

local function migrate inserts(where)
local current = tex.lists.contrib head
while current do
local id = current.id
if id == vlist or id == hlist then
if has attribute(current,8061) then
-- maybe some tracing message
else
set attribute(current,8061,1)
current = deal with inserts(current)
end
end
current = current.next
end
end

callback.register('buildpage filter',migrate inserts)

6.4 A few remarks

Surprisingly, the amount of code needed for insert migration is not that large.
This makes one wonder why TigX does not provide this feature itself as it could
have saved macro writers quite some time and headaches. Performance can
be a reason, unpredictable usage and side effects might be another. Only one
person knows the answer.

In CoNTEXT this mechanism is built in and it can be enabled by saying:

\automigrateinserts
\automigratemarks

As you can see here, we can also migrate marks. Future versions of Con-
TiXT will do this automatically and also provide some control over what classes
of inserts are moved around. We will probably overhaul the note handling
mechanism a few more times anyway as LUATEX evolves and the demands from
critical editions that use many kind of notes raise.

66 Deeply nested notes

6.5 Summary of code
The following code should work in plain TX:

\directlua 0 {

local hlist = node.id('hlist"')
local vlist = node.id('vlist')
local ins = node.id('ins')

local has attribute = node.has attribute
local set attribute = node.set attribute

local status = 8061

local function locate(head,first,last)
local current = head
while current do
local id = current.id
if id == vlist or id == hlist then
current.list, first, last = locate(current.list,first,last)
current = current.next
elseif id == ins then
local insert = current
head, current = node.remove(head,current)
insert.next = nil
if first then
insert.prev, last.next = last, insert

else
insert.prev, first = nil, insert
end
last = insert
else

current = current.next
end
end
return head, first, last
end

local function migrate inserts(where)
local current = tex.lists.contrib head
while current do
local id = current.id
if id == vlist or id == hlist and
not has attribute(current,status) then

Deeply nested notes 67

set attribute(current,status,1)
local h, first, last = current.list, nil, nil
while h do
local id = h.id
if id == vlist or id == hlist then
h, first, last = locate(h,first, last)
end
h = h.next
end
if first then
local n = current.next
if n then
last.next, n.prev = n, last
end
current.next, first.prev = first, current
current = last
end
end
current = current.next
end
end

callback.register('buildpage filter', migrate inserts)

}

Alternatively you can put the code in a file and load that with:
\directlua {require "luatex-inserts.lua"}
A simple plain test is:

\vbox{a\footnote{1}{1}b}
\hbox{a\footnote{2}{2}b}

The first footnote only shows up when we have hooked our migrator into the
callback. A not that bad result for 60 lines of Lua code.

68 Deeply nested notes

7 Upto ConTgXt MkVI

7.1 Introduction

No, this is not a typo: MKVI is the name of upcoming functionality but with an
experimental character. It is also a playground. Therefore this is not the final
story.

7.2 Defining macros

When you define macros in TgX, you use the # to indicate variables. So, you
code can end up with the following:

\def\MyTest#1#2#3#4%
{\dontleavehmode
\dostepwiserecurse{#1}{#2}{#3}
{\ifnum\recurselevel>#1 \space,\fi
\recurselevel: #4\space}%
.\par}

This macro is called with 4 arguments:
\MyTest{3}{8}{1}{Hi}

However, using numbers as variable identifiers might not have your preference.
It makes perfect sense if you keep in mind that TEX supports delimited argu-
ments using arbitrary characters. But in practice, and especially in ConNTgXT
we use only a few well defined variants. This is why you can also imagine:

\def\MyTest#first#last#step#text%s
{\dontleavehmode
\dostepwiserecurse{#first}{#last}{#step}
{\ifnum\recurselevel>#first \space,\fi
\recurselevel: #text}%
.\par}

In order for this to work, you need to give your file the suffix mkvi or you need
to put a directive on the first line:

% macros=mkvi

You can of course use delimited arguments as well, given that the delimiters

Upto ConTgXt MkVI 69

are not letters.

\def\TestOne[#1]%
{this is: #1}

\def\TestTwo#some%
{this is: #some}

\def\TestThree[#whatever] [#morel%
{this is: #more and #whatever}

\def\TestFour[#one]#two%
{\def\TestFive[#alpha] [#0ne]%
{#one, #two, #alpha}}

You can also use the following variant which is already present for a while but
not that much advertised. This method ignores all spaces in definitions so if
you need one, you have to use \space.

\starttexdefinition TestSix #oeps
here: #oeps

\stoptexdefinition

These commands work as expected:

\startlines
\TestOne [one]
\TestTwo {one}
\TestThree[one] [two]
\TestFour [one]{two}
\TestFive [one][two]
\TestSix {one}

\stoplines

this is: one

this is: one

this is: two and one
two, two, one

here: one

You can use buffers to collect definitions. In that case you can force prepro-

70 Upto ConTgXt MKVI

cessing of the buffer with \mkvibuffer[name].

7.3 Implementation

This functionality is not hard codes in the LuaATgX engine as this is not needed
at all. We just preprocess the file before it gets loaded and this is something
that is relatively easy to implement. Already early in the development of LuATgX
we have decided that instead of hard coding solutions, opening up makes more
sense.

One of the first mechanisms that were opened up was file 10. This means that
when a file is opened, you can decide to intercept lines and process them be-
fore passing them to the traditional built in input parser. The user can be
completely unaware of this. In fact, as LuaTiX only accepts uTF-8 preprocess-
ing will likely happen already when other input encodings are used.

The following helper functions are available:

local result = resolvers.macros.preprocessed(str)

This function returns a string with all named parameters replaced.
resolvers.macros.convertfile(oldname, newname)

This function converts a file into a new one.

local result = resolvers.macros.processmkvi(str,filename)

This function converts the string but only if the suffix of the filename is mkvi

or when the first line of the string is a comment line containing macros=mkvi.
Otherwise the original string is returned. The filename is optional.

7.4 A few details

Imagine that you want to do this:
\def\test#l{before#lafter}
When we use names this could look like:

\def\test#inbetween{before#inbetweenafter}

Upto ConTgXt MKVI 71

and that is not going to work out well. We could be more liberal with spaces,
like

\def\test #inbetween {before #inbetween after}

but then getting spaces in the output before or after variables would get more
complex. However, there is a way out:

\def\test#inbetween{before#{inbetween}after}

As the sequence #{ has a rather low probablility of showing up in a TgX source
file, this kind of escaping is part of the game. So, all the following cases are
valid:

\def\test#oeps{... #oeps ...}
\def\test#oeps{... #{oeps} ...}
\def\test#{main:oeps}{... #{main:oeps} ...}
\def\test#{oeps:1}{... #{oeps:1} ...}
\def\test#{oeps}{... #oeps ...}

When you use the braced variant, all characters except braces are acceptable
as name, optherwise only lowercase and uppercase characters are permitted.

Normally TgX uses a couple of special tokens like ~ and . In a macro definition
file you can avoid these by using primitives:

& \aligntab

\alignmark

~ \Usuperscript

_ \Usubscript

$ \Ustartmath

$ \Ustopmath

$$ \Ustartdisplaymath
$$ \Ustopdisplaymath

Especially the aligntab is worth noticing: using that one directly in a macro
definition can result in unwanted replacements, depending whether a match
can be found. In practice the following works out well

\def\test#oeps{test:#oeps \halign{##\cr #oeps\cr}}

You can use uTr-8 characters as well. For practical reasons this is only possible
with the braced variant.

72 Upto ConTgXt MkVI

\def\bla#{bla}{bla:#{bla}}

There will probably be more features in future versions but each of them needs
careful consideration in order to prevent interferences.

7.5 Utilities

There is currently one utility (or in fact an option to an existing utility):
mtxrun --script interface --preprocess whatever.mkvi

This will convert the given file(s) to new ones, with the default suffix tex. Ex-
isting files will not be overwritten unless - --force is given. You can also force
another suffix:

mtxrun --script interface --preprocess whatever.mkvi --suffix=mkiv

A rather plain module luatex-preprocessor.lua is provided for other usage.
That variant provides a somewhat simplified version.

Given that you have a luatex-plain format you can run:
luatex --fmt=luatex-plain luatex-preprocessor-test.tex
Such a plain format can be made with:

luatex --ini luatex-plain

You probably need to move the format to a proper location in your TgX tree.

Upto ConTgXt MkVI 73

74 Upto ConTgXt MkVI

8 Backend code

8.1 Introduction

In CoNTgXT we've always separated the backend code in so called driver files.
This means that in the code related to typesetting only calls to the ap1 take
place, and no backend specific code is to be used. That way we can support
backend like dvipsone (and dviwindo), dvips, acrobat, pdftex and dvipdfmx with
one interface. A simular model is used in MkIV although at the moment we
only have one backend: ppFr.%

Some ConNTEXrt users like to add their own pDF specific code to their styles or
modules. However, such extensions can interfere with existing code, especially
when resources are involved. This has to be done via the official helper macros.

In the next sections an overview will be given of the current approach. There are
still quite some rough edges but these will be polished as soon as the backend
code is more isolated in LuaTiX itself.

8.2 Structure

A ppr file is a tree of indirect objects. Each object has a number and the file
contains a table (or multiple tables) that relates these numbers to positions in
a file (or position in a compressed object stream). That way a file can be viewed
without reading all data: a viewer only loads what is needed.

10 obj <<
/Name (test) /Address 2 0 R
>>
2 0 obj [
(Main Street) (24) (postal code) (MyPlace)

For the sake of the discussion we consider strings like (test) also to be objects.
In the next table we list what we can encounter in a ppr file. There can be
indirect objects in which case a reference is used (2 0 R) and direct ones.

type form meaning

constant /... A symbol (prescribed string).

8 At this moment we only support the native ppr backend but future versions might support xmL
(HT™ML) output as well.

Backend code 75

string (...) A sequence of characters in pdfdoc encoding

unicode <...> A sequence of characters in utf16 encoding

number 3.1415 A number constant.

boolean true/false A boolean constant.

reference N 0 R A reference to an object

dictionary << ... >> A collection of key value pairs where the value itself
is an (indirect) object.

array [... 1] A list of objects or references to objects.

stream A sequence of bytes either or not packaged with a
dictionary that contains descriptive data.

xform A special kind of object containing an reusable blob

of data, for example an image.

While writing additional backend code, we mostly create dictionaries.
<< /Name (test) /Address 2 0 R >>

In this case the indirect object can look like:

[(Main Street) (24) (postal code) (MyPlace)]

It all starts in the document’s root object. From there we access the page tree
and resources. Each page carries its own resource information which makes
random access easier. A page has a page stream and there we find the to be
rendered content as a mixture of (UNICODE) strings and special drawing and
rendering operators. Here we will not discuss them as they are mostly gener-
ated by the engine itself or dedicated subsystems like the MetaPost converter.
There we use literal or \ latelua whatsits to inject code into the current stream.

In the CoNTgXT MKII backend drivers code you will see objects in their ver-
bose form. The content is passed on using special primitives, like \pdfobj,
\pdfannot, \pdfcatalog, etc. In MkIV no such primitives are used. In fact,
some of them are overloaded to do nothing at all. In the Lua backend code you
will find function calls like:

local d = lpdf.dictionary {
Name = lpdf.string("test"),

Address = lpdf.array {
"Main Street", "24", "postal code", "MyPlace",

Equaly valid is:

76 Backend code

local d = lpdf.dictionary()
d.Name = "test"

Eventually the object will end up in the file using calls like:

local r = pdf.immediateobj(tostring(d))

or using the wrapper (which permits tracing):

local r = lpdf.flushobject(d)

The object content will be serialized according to the formal specification so
the proper << >> etc. are added. If you want the content instead you can use
a function call:

local dict = d()

An example of using references is:

local a = lpdf.array {

"Main Street", "24", "postal code", "MyPlace",
}
local d = lpdf.dictionary {

Name lpdf.string("test"),

Address lpdf.reference(a),

}
local r = lpdf.flushobject(d)

We have the following creators. Their arguments are optional.

function optional parameter

lpdf.dictionary hash with key/values

lpdf.array indexed table of objects
lpdf.unicode string

lpdf.string string

lpdf.number number

lpdf.constant string

lpdf.null

lpdf.boolean boolean
lpdf.reference string

lpdf.verbose indexed table of strings

Flushing objects is done with:

Backend code 77

lpdf.flushobject(obj)

Reserving object is or course possible and done with:
local r = lpdf.reserveobject()

Such an object is flushed with:
lpdf.flushobject(r,obj)

We also support named objects:
lpdf.reserveobject("myobject")

lpdf.flushobject("myobject",obj)

8.3 Resources

While LuaTgX itself will embed all resources related to regular typesetting, MKIV
has to take care of embedding those related to special tricks, like annotations,
spot colors, layers, shades, transparencies, metadata, etc. If you ever took
a look in the MKII spec-* files you might have gotten the impression that it
quickly becomes messy. The code there is actually rather old and evolved in
sync with the ppr format as well as PDFIEX and pvipDFMX maturing to their
current state. As a result we have a dedicated object referencing model that
sometimes results in multiple passes due to forward references. We could have
gotten away from that with the latest versions of pDFIEX as it provides means
to reserve object numbers but it makes not much sense to do that now that
MKII is frozen.

Because third party modules (like tikz) also can add resources like in MkII using
an AprI that makes sure that no interference takes place. Think of macros like:

\pdfbackendsetcatalog {key}{string}
\pdfbackendsetinfo {key}{string}
\pdfbackendsetname {key}{string}

\pdfbackendsetpageattribute {key}{string}
\pdfbackendsetpagesattribute{key}{string}
\pdfbackendsetpageresource {key}{string}

\pdfbackendsetextgstate {key}{pdfdata}
\pdfbackendsetcolorspace {key}{pdfdata}

78 Backend code

\pdfbackendsetpattern {key}{pdfdata}
\pdfbackendsetshade {key}{pdfdata}

One is free to use the Lua interface instead, as there one has more possibilities.
The names are similar, like:

lpdf.addtoinfo(key,anything valid pdf)

At the time of this writing (LuaTiEX .50) there are still places where TgX and Lua
code is interwoven in a non optimal way, but that will change in the future as
the backend is completely separated and we can do more TgX trickery at the
Lua end.

Also, currently we expose more of the backend code than we like and future
versions will have a more restricted access. The following function will stay
public:

lpdf.addtopageresources (key,value)
lpdf.addtopageattributes (key,value)
lpdf.addtopagesattributes(key,value)

lpdf.adddocumentextgstate(key, value)
lpdf.adddocumentcolorspac(key,value)
lpdf.adddocumentpattern (key,value)
lpdf.adddocumentshade (key,value)

lpdf.addtocatalog (key,value)
lpdf.addtoinfo (key,value)
lpdf.addtonames (key,value)

There are several tracing options built in and some more will be added in due
time:

\enabletrackers
[backend.finalizers,
backend.resources,
backend.objects,
backend.detail]

As with all trackers you can also pass them on the command line, for example:

context --trackers=backend.* yourfile

Backend code 79

The reference related backend mechanisms have their own trackers.

8.4 Transformations

There is at the time of this writing still some backend related code at the TgX
end that needs a cleanup. Most noticeable is the code that deals with transfor-
mations (like scaling). At some moment in pDFIEX a primitive was introduced
but it was not completely covering the transform matrix so we never used it. In
LuaTgX we will come up with a better mechanism. Till that moment we stick
to the MKII method.

8.5 Annotations

The Lua based backend of MKIV is not so much less code, but definitely cleaner.
The reason why there is quite some code is because in CoNTEXT we also handle
annotations and destinations in Lua. In other words: TEX is not bothered by
the backend any more. We could make that split without too much impact
as we never depended on PDFIEX hyperlink related features and used generic
annotations instead. It's for that reason that CoNTgXT has always been able to
nest hyperlinks and have annotations with a chain of actions.

Another reason for doing it all at the Lua end is that as in MkIl we have to
deal with the rather hybrid cross reference mechanisms which uses a sort of
language and parsing this is also easier at the Lua end. Think of:

\definereference[somesound] [StartSound(attention)]
\at {just some page} [someplace,somesound,StartMovie(somemovie)]

We parse the specification expanding shortcuts when needed, create an action
chain, make sure that the movie related resources are taken care of (normally
the movie itself will be a figure), and turn the three words into hyperlinks. As
this all happens in Lua we have less TgX code. Contrary to what you might
expect, the Lua code is not that much faster as the MkII TgX code is rather
optimized.

Special features like JAavAScripT as well as widgets (and forms) are also reimple-
mented. Support for JavaScript is not that complex at all, but as in CoNTEXT
we can organize scripts in collections and have automatic inclusion of used
functions, still some code is needed. As we now do this in Lua we use less TgX
memory. Reimplementing widgets took a bit more work as I used the oppor-
tunity to remove hacks for older viewers. As support for widgets is somewhat

80 Backend code

instable in viewers quite some testing was needed, especially because we keep
supporting cloned and copied fields (resulting in widget trees).

An interesting complication with widgets is that each instance can have a lot
of properties and as we want to be able to use thousands of them in one doc-
ument, each with different properties, we have efficient storage in MkII and
want to do the same in Lua. Most code at the TgX end is related to passing all
those options.

You could use the Lua functions that relate to annotations etc. but normally
you will use the regular ConTEXt user interface. For practical reasons, the
backend code is grouped in several tables:

The backends table has subtables for each backend and currently there is only
one: pdf. Each backend provides tables itself. In the codeinjections name-
space we collect functions that don't interfere with the typesetting or typeset
result, like inserting all kind of resources (movies, attachment, etc.), widget
related functionality, and in fact everything that does not fit into the other cat-
egories. In nodeinjections we organize functions that inject literal pbF code
in the nodelist which then ends up in the pDpF stream: color, layers, etc. The
registrations table is reserved for functions related to resources that result
from node injections: spot colors, transparencies, etc. Once the backend code
is finished we might come up with another organization. No matter what we
end up with, the way the backends table is supposed to be organized deter-
mines the ap1 and those who have seen the MkII backend code will recognize
some of it.

8.6 Metadata

We always had the opportunity to set the information fields in a ppF but stan-
dardization forces us to add these large verbose metadata blobs. As this blob
is coded in xML we use the built in xmL parser to fill a template. Thanks to
extensive testing and research by Peter Rolf we now have a rather complete
support for ppr/x related demands. This will definitely evolve with the ad-
vance of the pDF specification. You can replace the information with your own
but we suggest that you stay away from this metadata mess as far as possible.

8.7 Helpers

If you look into the lpdf-*.1lua files you will find more functions. Some are
public helpers, like:

Backend code 81

lpdf.toeight(str) returns (string)
lpdf.tosixteen(str) returns <utfl6é sequence>

An example of another public function is:

lpdf.sharedobj (content)

This one flushes the object and returns the object number. Already defined
objects are reused. In addition to this code driven optimization, some other

optimization and reuse takes place but all that happens without user inter-

vention.

82 Backend code

9 Callbacks

9.1 Introduction

Callbacks are the means to extend the basic TgX engine’s functionality in
LuaTEX and ConNTgXt MKIV uses them extensively. Although the interface is
still in development we see users popping in their own functionality and al-
though there is nothing wrong with that, it can open a can of worms.

It is for this reason that from now on we protect the MkIV callbacks from being
overloaded. For those who still want to add their own code some hooks are
provided. Here we will address some of these issues.

9.2 Actions

There are already quite some callbacks and we use most of them. In the follow-
ing list the callbacks tagged with enabled are used and frozen, the ones tagged
disabled are blocked and never used, while the ones tagged undefined are yet
unused.

append to vlist filter undefined

buildpage filter enabled vertical spacing etc (mvl)
char _exists undefined

contribute filter undefined

define font enabled definition of fonts (tfmdata preparation)
find cidmap file enabled find file using resolver
find data file enabled find file using resolver
find enc file enabled find file using resolver
find font file enabled find file using resolver
find format file enabled find file using resolver
find image file enabled find file using resolver
find map file enabled find file using resolver
find opentype file enabled find file using resolver
find output file enabled find file using resolver
find pk file enabled find file using resolver
find read file enabled find file using resolver
find sfd file enabled find file using resolver
find truetype file enabled find file using resolver
find typel file enabled find file using resolver
find vf file enabled find file using resolver
find write file enabled find file using resolver
finish pdffile enabled

Callbacks 83

finish pdfpage
hpack filter

hpack quality
hyphenate

insert local par
kerning
ligaturing

linebreak filter
mlist to hlist

open read file

post linebreak filter

pre dump

pre linebreak filter

pre output filter
process input buffer
process jobname
process output buffer
process rule

read cidmap file
read data file
read enc file

read font file
read map file

read opentype file
read pk file
read sfd file

read truetype file
read typel file
read vf file

show error _hook

show error_message
show lua error hook
show warning message
start file
start page number

start run

84 Callbacks

enabled
enabled

undefined
disabled

undefined
disabled
disabled

enabled
enabled
enabled
enabled

enabled

enabled

undefined
disabled
undefined
disabled
enabled
undefined
enabled
enabled
enabled
enabled
undefined
enabled
enabled
undefined
undefined
enabled
enabled
enabled
enabled
enabled
enabled
enabled

enabled

all kind of horizontal manipulations (be-
fore hbox creation)

normal hyphenation routine, called else-
where

normal kerning routine, called elsewhere
normal ligaturing routine, called else-
where

breaking paragraps into lines
preprocessing math list

open file for reading

all kind of horizontal manipulations (af-
ter par break)

lua related finalizers called before we dump
the format

all kind of horizontal manipulations (be-
fore par break)

actions performed when reading data
actions performed when writing data

read file at once
read file at once
read file at once
read file at once
read file at once
read file at once
read file at once
read file at once
read file at once
read file at once
read file at once

actions performed at the beginning of a
shipout

actions performed at the beginning of a
run

stop file enabled

stop page number enabled actions performed at the end of a shipout
stop_run enabled actions performed at the end of a run
vpack filter enabled vertical spacing etc

vpack quality undefined

You can be rather sure that we will eventually use all callbacks one way or the
other. Also, some callbacks are only set when certain functionality is enabled.

It may sound somewhat harsh but if users kick in their own code, we cannot
guarantee CoNTEXT's behaviour any more and support becomes a pain. If you
really need to use a callback yourself, you should use one of the hooks and
make sure that you return the right values.

The exact working of the callback handler is not something we need to bother
users with so we stick to a simple description. The next list is not definitive and
evolves. For instance we might at some point decide to add more granularity.

We only open up some of the node list related callbacks. All callbacks related
to file handling, font definition and housekeeping are frozen. Most if the mech-
anisms that use these callbacks have hooks anyway.

Of course you can overload the built in functionality as this is currently not
protected, but we might do that as well once MkIV is stable enough. After all,

at the time of this writing overloading can be handy when testing.

This leaves the node list manipulators. The are grouped as follows:

category callback usage

processors pre linebreak filter calledjustbefore the paragraph isbro-
ken into lines

hpack filter called just before a horizontal box is

constructed

finalizers post linebreak filter called justafter the paragraph has been
broken into lines

shipouts no callback yet applied to the box (or xform) that is to
be shipped out

mvlbuilders buildpage filter called after some material has been
added to the main vertical list

vboxbuilders vpack filter called when some material is added

to a vertical box

Callbacks 85

math mlist to hlist called just after the math list is cre-
ated, before it is turned into an hori-
zontal list

Each category has several subcategories but for users only two make sense:
before and after. Say that you want to hook some tracing into the mvlbuilder.
This is how it's done:

function third.mymodule.myfunction(where)
nodes.show simple list(tex.lists.contrib head)
end

nodes.tasks.appendaction("processors", "before", "third.mymodule.myfunction")
As you can see, in this case the function gets no head passed (at least not

currently). This example also assumes that you know how to access the right
items. The arguments and return values are given below.®

category arguments return value
processors head, ... head, done
finalizers head, ... head, done
shipouts head head, done
mvlbuilders done
vboxbuilders head, ... head, done
math head, ... head, done
9.3 Tasks

In the previous section we already saw that the actions are in fact tasks and
that we can append (and therefore also prepend) to a list of tasks. The before
and after task lists are valid hooks for users contrary to the other tasks that
can make up an action. However, the task builder is generic enough for users
to be used for individual tasks that are plugged into the user hooks.

Of course at some point, too many nested tasks bring a performance penalty
with them. At the end of a run MKIV reports some statistics and timings and
these can give you an idea how much time is spent in Lua. Of course this is a
rough estimate only.

This interface might change a bit in future versions of CoNTEXT. Therefore we will not discuss
the few more optional arguments that are possible.

86 Callbacks

The following tables list all the registered tasks for the processors actions:

category function

before nodes.properties.attach

normalizers typesetters.wrappers.handler
typesetters.characters.handler
fonts.collections.process
fonts.checkers.missing

characters scripts.autofontfeature.handler
scripts.splitters.handler
typesetters.cleaners.handler
typesetters.directions.handler
typesetters.cases.handler
typesetters.breakpoints.handler
scripts.injectors.handler

words languages.replacements.handler
languages.hyphenators.handler
languages.words.check
typesetters.initials.handler
typesetters.firstlines.handler

fonts builders.paragraphs.solutions.splitters.split
nodes.handlers.characters
nodes.injections.handler
nodes.handlers.protectglyphs
builders.kernel.ligaturing
builders.kernel.kerning
nodes.handlers.stripping
fonts.goodies.colorschemes.coloring

lists typesetters.characteralign.handler
typesetters.spacings.handler
typesetters.kerns.handler
typesetters.digits.handler
typesetters.italics.handler
languages.visualizediscretionaries

after typesetters.marksuspects

Some of these do have subtasks and some of these even more, so you can
imagine that quite some action is going on there.

The finalizer tasks are:

Callbacks 87

category function

before unset

normalizers wunset

fonts builders.paragraphs.solutions.splitters.optimize

lists typesetters.paragraphs.normalize
typesetters.margins.localhandler
builders.paragraphs.keeptogether
nodes.linefillers.handler

after unset
Shipouts concern:

category function

before unset

normalizers typesetters.showsuspects
typesetters.margins.finalhandler
builders.paragraphs.expansion.trace
typesetters.alignments.handler
nodes.references.handler
nodes.destinations.handler
nodes.rules.handler
nodes.shifts.handler
structures.tags.handler
nodes.handlers.accessibility
nodes.handlers.backgrounds
nodes.handlers.alignbackgrounds
nodes.properties.delayed

finishers nodes.visualizers.handler
attributes.colors.handler
attributes.transparencies.handler
attributes.colorintents.handler
attributes.negatives.handler
attributes.effects.handler
attributes.viewerlayers.handler

after unset
There are not that many mvlbuilder tasks currently:

category function

before unset

88 Callbacks

streams.collect
typesetters.margins.globalhandler
nodes.handlers.migrate
builders.vspacing.pagehandler
builders.profiling.pagehandler
typesetters.checkers.handler

normalizers

after unset

The vboxbuilder perform similar tasks:

category function

before unset

normalizers builders.vspacing.vboxhandler
typesetters.checkers.handler

after unset

Finally, we have tasks related to the math list:

category function

before unset

normalizers noads.handlers.showtree

noads.
noads.
noads.
noads.
noads.
noads.

handlers.

handlers

unscript

.variants
handlers.
handlers.
handlers.
handlers.

relocate
families
render

collapse

noads.handlers.domains
noads.handlers.autofences
noads.handlers.resize
noads.handlers.alternates
noads.handlers.tags
noads.handlers.italics
noads.handlers.classes

builders builders.kernel.mlist to hlist

typesetters.directions.processmath

after unset

As MKIV is developed in sync with LuaTiEX and code changes from experimental
to more final and reverse, you should not be too surprised if the registered

Callbacks 89

function names change.
You can create your own task list with:
nodes.tasks.new("mytasks",{ "one", "two" })

After that you can register functions. You can append as well as prepend them
either or not at a specific position.

nodes.tasks.appendaction ("mytask","one","bla.alpha")
nodes.tasks.appendaction ("mytask","one","bla.beta")

nodes.tasks.prependaction("mytask","two","bla.gamma")
nodes.tasks.prependaction("mytask","two","bla.delta")

nodes.tasks.appendaction ("mytask","one","bla.whatever","bla.alpha")
Functions can also be removed:

nodes.tasks.removeaction("mytask", "one","bla.whatever")

As removal is somewhat drastic, it is also possible to enable and disable func-
tions. From the fact that with these two functions you don’t specify a category
(like one or two) you can conclude that the function names need to be unique
within the task list or else all with the same name within this task will be

disabled.

nodes.tasks.enableaction ("mytask","bla.whatever")
nodes.tasks.disableaction("mytask", "bla.whatever")

The same can be done with a complete category:

nodes.tasks.enablegroup ("mytask","one")
nodes.tasks.disablegroup("mytask", "one")

There is one function left:
nodes.tasks.actions("mytask",2)

This function returns a function that when called will perform the tasks. In
this case the function takes two extra arguments in addition to head.!©

10 Specifying this number permits for some optimization but is not really needed

90 Callbacks

Tasks themselves are implemented on top of sequences but we won't discuss
them here.

9.4 Paragraph and page builders

Building paragraphs and pages is implemented differently and has no user
hooks. There is a mechanism for plugins but the interface is quite experimen-
tal.

Callbacks 91

92 Callbacks

10 Building paragraphs

10.1 Introduction

You enter the den of the Lion when you start messing around with the par-
builder. Actually, as TgX does a pretty good job on breaking paragraphs into
lines I never really looked into the code that does it all. However, the Oriental
TEX project kind of forced it upon me. In the chapter about font goodies an
optimizer is described that works per line. This method is somewhat similar
to expansion level one support (hz) in the sense that it acts independent of the
par builder: the split off (best) lines are postprocessed. Where expansion in-
volves horizontal scaling, the goodies approach does with (Arabic) words what
the original HZ approach does with glyphs.

It would be quite some challenge (at least for me) to come up with solutions
that look at the whole paragraph and as the per-line approach works quite
well, there is no real need for an alternative. However, in September 2008,
when we were exploring solutions for Arabic par building, Taco converted the
parbuilder into Lua code and stripped away all code related to hyphenation,
protrusion, expansion, last line fitting, and some more. As we had enough on
our plate at that time, we never came to really testing it. There was even less
reason to explore this route because in the Oriental TEX project we decided to
follow the “use advanced OpPENTYPE features” route which in turn lead to the
‘replace words in lines by narrower of wider variants’ approach.

However, as the code was laying around and as we want to explore further I
decided to pick up the parbuilder thread. In this chapter some experiences will
be discussed. The following story is as much Taco’s as mine.

10.2 Cleaning up

In retrospect, we should not have been too surprised that the first approxi-
mation was broken in many places, and for good reason. The first version of
the code was a conversion of the C code that in turn was a conversion from
the original interwoven PascaL code. That first conversion still looked quite C—
ish and carried interesting bit and pieces of C—macros, C-like pointer tests,
interesting magic constants and more.

When I took the code and Lua-fied it nearly every line was changed and it took

Taco and me a bit of reverse engineering to sort out all problems (thank you
Skype). Why was it not an easy task? There are good reasons for this.

Building paragraphs 93

e The parbuilder (and related hpacking) code is derived from traditional TX
and has bits of PDFTEX, ALEPH (OMEGA), and of course LuaTgX.

e The advocated approach to extending TigX has been to use change files which
means that a coder does not see the whole picture.

e Originally the code is programmed in the literate way which means that
the resulting functions are build stepwise. However, the final functions can
(and have) become quite large. Because LUATEX uses the woven (merged)
code indeed we have large functions. Of course this relates to the fact that
succesive TigX engines have added functionality. Eventually the source will
be webbed again, but in a more sequential way.

e This is normally no big deal, but the ALEPH (OMEGA) code has added a level
of complexity due to directional processing and additional begin and end
related boxes.

e Also the ¢-TgX extension that deals with last line fitting is interwoven and
uses goto’s for the control flow. Fortunately the extensions are driven by
parameters which make the related code sections easy to recognize.

e The pDFIEX protrusion extension adds code to glyph handling and discre-
tionary handling. The expansion feature does that too and in addition also
messes around with kerns. Extra parameters are introduced (and adapted)
that influence the decisions for breaking lines. There is also code originat-
ing in ppDFIEX which deals with poor mans grid snapping although that is
quite isolated and not interwoven.

e Because it uses a slightly different way to deal with hyphenation, LuaTgX
itself also adds some code.

e Tracing is sort of interwoven in the code. As it uses goto’s to share code
instead of functions, one needs to keep a good eye on what gets skipped or
not.

I'm pretty sure that the code that we started with looks quite different from
the original TgX code if it had been translated into C. Actually in modern TgX
compiling involves a translation into C first but the intermediate form is not
meant for human eyes. As the LuaTgX project started from that merged code,
Taco and Hartmut already spent quite some time on making it more readable.
Of course the original comments are still there.

Cleaning up such code takes a while. Because both languages are similar but
also quite different it took some time to get compatible output. Because the C

94 Building paragraphs

11

code uses macros, careful checking was needed. Of course Lua’s table model
and local variables brought some work as well. And still the code looks a bit
C—ish. We could not divert too much from the original model simply because
it's well documented.

When moving around code redundant tests and orphan code has been re-
moved. Future versions (or variants) might as well look much different as
I want more hooks, clearly split stages, and convert some linked list based
mechanism to Lua tables. On the other hand, as already much code has been
written for CoNTgXT MKIV, making it all reasonable fast was no big deal.

10.3 Expansion

The original C—code related to protrusion and expansion is not that efficient
as many (redundant) function calls take place in the linebreaker and packer.
As most work related to fonts is done in the backend, we can simply stick to
width calculations here. Also, it is no problem at all that we use floating point
calculations (as Lua has only floats). The final result will look okay as the
original hpack routine will nicely compensate for rounding errors as it will nor-
mally distribute the content well enough. We are currently compatible with the
regular par builder and protrusion code, but expansion gives different results
(actually not worse).

The Lua hpacker follows a different approach. And let’'s admit it: most TiXies
won't see the difference anyway. As long as we're cross platform compatible it's
fine.

It is a well known fact that character expansion slows down the parbuilder.
There are good reasons for this in the pDFIEX approach. Each glyph and in-
tercharacter kern is checked a few times for stretch or shrink using a function
call. Also each font reference is checked. This is a side effect of the way pDFTEX
backend works as there each variant has its own font. However, in LUATEX, we
scale inline and therefore don’'t really need the fonts. Even better, we can get
rid of all that testing and only need to pass the eventual expansion ratio so
that the backend can do the right scaling. We will prototype this in the Lua
version!! and we feel confident about this approach it will be backported into
the C code base. So eventually the C might become a bit more readable and
efficient.

Intercharacter kerning is dealt with in a somewhat strange way. If a kern of

For this Hartmuts has adapted the backend code has to honour this field in the glyph and
kern nodes.

Building paragraphs 95

12

subtype zero is seen, and if it's neighbours are glyphs from the same font, the
kern gets replaced by a scaled one looked up in the font's kerning table. In
the parbuilder no real replacement takes place but as each line ends up in the
hpack routine (where all work is simply duplicated and done again) it really
gets replaced there. When discussing the current aproach we decided, that
manipulating intercharacter kerns while leaving regular spacing untouched, is
not really a good idea so there will be an extra level of configuration added to
LuaTgX: 12

no character and kern expansion

character and kern expansion applied to complete lines
character and kern expansion as part of the par builder
only character expansion as part of the par builder (new)

W N =0

You might wonder what happens when you unbox such a list: the original font
references have been replaced as were the kerns. However, when repackaged
again, the kerns are replaced again. In traditional TgX, indeed rekerning might
happen when a paragraph is repackaged (as different hyphenation points might
be chosen and ligature rebuilding etc. has taken place) but in LuaTgX we have
clearly separated stages. An interesting side effect of the conversion is that we
really have to wonder what certain code does and if it’s still needed.

10.4 Performance

We had already noticed that the Lua variant was not that slow. So after the
first cleanup it was time to do some tests. We used our regular tufte.tex test
file. This happens to be a worst case example because each broken line ends
with a comma or hyphen and these will hang into the margin when protruding
is enabled. So the solution space is rather large (an example will be shown
later).

Here are some timings of the March 26, 2010 version. The test is typeset in a
box so no shipout takes place. We're talking of 1000 typeset paragraphs. The
times are in seconds an between parentheses the speed relative to the regular
parbuilder is mentioned.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)
protruding 1.7 14.2 (8.4) 15.6 (9.2)

As I more and more run into books typeset (not by TgX) with a combination of character expan-
sion and additional intercharacter kerning I've been seriously thinking of removing support for
expansion from ConNTgXTt MKIV. Not all is progress especially if it can be abused.

96 Building paragraphs

expansion 2.3 11.4 (5.0) 13.3 (5.8)
both 29 19.1 (6.6) 21.5 (7.4)

For a regular paragraph the Lua variant (currently) is 5 times slower and about
6 times when we use the Lua hpacker, which is not that bad given that it's
interpreted code and that each access to a field in a node involves a function
call. Actually, we can make a dedicated hpacker as some code can be omitted,
The reason why the protruding is relatively slow is, that we have quite some
protruding characters in the test text (many commas and potential hyphens)
and therefore we have quite some lookups and calculations. In the C variant
much of that is inlined by macros.

Will things get faster? I'm sure that I can boost the protrusion code and prob-
ably the rest as well but it will always be slower than the built in function.
This is no problem as we will only use the Lua variant for experiments and
special purposes. For that reason more MkIV like tracing will be added (some
is already present) and more hooks will be provided once the builder is more
compartimized. Also, future versions of LuaTgX will pass around paragrapgh
related parameters differently so that will have impact on the code as well.

10.5 Usage

The basic parbuilder is enabled and disabled as follows:!3

\definefontfeature[example] [default] [protrusion=pure]
\definedfont[Serif*example]
\setupalign[hanging]

\startparbuilder[basic]
\startcolor[blue]
\input tufte
\stopcolor
\stopparbuilder

This results in:

We thrive in information—thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,

13 I'm not sure yet if the parbuilder has to do automatic grouping.

Building paragraphs 97

filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf

through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the

chaff and separate the sheep from the goats.

There are a few tracing options in the parbuilders namespace but these are
not stable yet.

10.6 Conclusion

The module started working quite well around the time that Peter Gabriels
“Scratch My Back” ended up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit that I scratched the back
of my head a couple of times when looking at the code below. It made me
realize that a new implementation of a known problem indeed can come out
quite different but at the same time has much in common. As with music it’s
a matter of taste which variant a user likes most.

At the time of this writing there is still work to be done. For instance the large

functions need to be broken into smaller steps. And of course more testing is
needed.

98 Building paragraphs

11 Tagged PDF

11.1 Introduction

Occasionally users asked me if ConNTgXT can produce tagged ppr and the an-
swer to that has been: I'll implement it when I need it. However, users tell me
that publishers more and more demand tagged ppr files, although one might
wonder what for, except maybe for accessibility. Another reason for not having
spent too much time on it before is that the specification was not that inviting.

At any rate, when I saw Ross Moore!4 presenting tagged math at TUG 2010,
I decided to look up the spec once more and see if I could get into the mood
to implement tagging. Before I started it was already clear that there were a
couple of boundary conditions:

e Tagging should not put a burden on the user but users should be able to
tag themselves.

e Tagging should not slow down a run too much; this is no big deal as one
can postpone tagging till the last run.

e Tagging should in no way interfere with typesetting, so no funny nodes
should be injected.

e Tagging should not make the code look worse, neither the document source,
nor the low level CoNTEXT code.

And of course implementing it should not take more than a few days’ work,
certainly not in an exceptionally hot summer.

You can ‘google’ for one of Ross’s documents (like DML 002-2009-1 12.pdf) to
see how a document source looks at his end using a special version of PDFTEX.
However, the version on my machine didn’t support the shown primitives, so
I could not see what was happening under the hood. Unfortunately it is quite
hard to find a properly tagged document so we have only the reference manual
as starting point. As the ppFIEX approach didn’t look that pleasing anyway, I
just started from scratch.

Tags can help Acrobat Reader when reading out the text aloud. But you cannot
browse the structure in the no-cost version of Acrobat and as not all users have
the professional version of Acrobat, the fact that a document has structure can
go unnoticed. Add to that the fact that the overhead in terms of bytes is quite
large as many more objects are generated, and you will understand why this

14 He is often exploring the boundaries of pbr, UNicobE and evolving techniques related to math
publishing so you'd best not miss his presentations when you are around.

Tagged PDF 99

feature is not enabled by default.

11.2 Implementation

So, what does tagging boil down to? We can best look at how tagged information
is shown in Acrobat. Figure 11.1 shows the content tree that has been added
(automatically) to a document while figure 11.2 shows a different view.

Content | Order Tags
%v
B tagged-003.pdf
=} ﬁ Pagel
% [1] One
%4 [2] We thrive in information--thick worlds because of ...
L JEIN
¢ [4] first
o [5] - thrive in information—thick worlds becanse of our marvelous and everyvday ca-
&5 [6] second pacity to select, edit, single out, structure, highlight, group. pair, merge, harmo-
nize, synthesize, focus, organize, condense, reduce, boil down, choose, categorize,
catalog, classify, list, abstract. scan, look into, idealize, isolate, discriminate, dis-
tinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect, filter, lump.
skip, smooth, chunk, average, approximate, cluster, aggregate, outline, summarize,

%4 [7] The Earth, as a habitat for animal life, is in old ...
%4 [B] whocares
% [9] Coming back to the use of typefaces in electronic ...

[5 Page2 itemize, review, dip into, flip through, browse, glance into, leaf through, skim, re-
[5) Page3 fine, enumerate, glean, synopsize, winnow the wheat from the chaff and separate the
2 Pages sheep from the goats.

m Page5

l

EE

7 be Earth, as a habitat for animal life, is in old age and has a fatal illness. Several,
1 fact. It would be happening whether humans had ever evolved or not. But our
presence is like the effect of an old-age patient who smokes many packs of cigarettes
per day — and we humans are the cigarettes.

ocares ming back to the use of typefaces in electronic publishing:
any of the new typographers receive their knowledge and in-

;

formation about the rules of typography from books, from com-
puter magazines or the instruction manuals which they get with
the purchase of a PC or software. There is not so much basic
instruction, as of now, as there was in the old days, showing
the differences between good and bad typographic design. Many
people are just fascinated by their PC's tricks, and think that
a widely—praised program, called up on the screen, will make
everything automatic from now on.

Figure 11.2 Acrobat showing the tag order.
In order to get that far, we have to do the following:

e Carry information with (typeset) text.

e Analyse this information when shipping out pages.
e Add a structure tree to the page.

e Add relevant information to the document.

That first activity is rather independent of the other three and we can use

that information for other purposes as well, like identifying where we are in
the document. We carry the information around using attributes. The last

100 Tagged PDF

Content Order | Tags

ElO <document>
=47 <division> frontpart
=7 <structure> chapter
=7 <structuretitle>
= One
=7 <structurecontent>
ElO < paragraph>
¥ We thrive in information--thick worlds because of ...
ElO <list> itemize
Elo <listitermn:
B <listtag>
=<7 <listcontent>
B first
7 <listitem>
ElO < paragraph>
'%§ The Earth, as a habitat for animal life, is in old ...
ElO «description> whatever
<7 <descriptiontag>
7 <descriptioncontent>
ElO <division> bodypart
El@ <structure> chapter
=7 <structurenumber>
=
=47 <structuretitle>
B Two
=4 <structurecontent>
=47 <list> itemize
=7 <listitem>
=7 <listtag>
<7 <listcontent=
=7 <listitem>
O <structure> chapter
O <structure> chapter

Figure 11.1 A tag list in Acrobat.

Tagged PDF 101

three activities took a bit of experimenting mostly using the “Example of Logical
Structure” from the ppF standard 32000-1:2008.

This resulted in a tagging framework that uses explicit tags, meaning the user
is responsible for the tagging:

\setupstructure[state=start,method=none]
\starttext
\startelement[document]
\startelement[chapter]
\startelement[p] \input davis \stopelement \par
\stopelement
\startelement[chapter]
\startelement[p] \input zapf \stopelement \par
\startelement[whatever]
\startelement[p] \input tufte \stopelement \par
\startelement[p] \input knuth \stopelement \par
\stopelement
\stopelement
\startelement[chapter]
oeps
\startelement[p] \input ward \stopelement \par
\stopelement
\stopelement
\stoptext
Since this is not much fun, we also provide an automated variant. In the
previous example we explicitly turned off automated tagging by setting method
to none. By default it has the value auto.
\setupstructure[state=start] % default is method=auto
\definedescription[whatever]

\starttext

\startfrontmatter

102 Tagged PDF

\startchapter[title=0ne]
\startparagraph \input tufte \stopparagraph
\startitemize
\startitem first \stopitem
\startitem second \stopitem
\stopitemize
\startparagraph \input ward \stopparagraph
\startwhatever {Herman Zapf} \input zapf \stopwhatever
\stopchapter

\stopfrontmatter

\startbodymatter

If you use commands like \chapter you will not get the desired results. Of
course these can be supported but there is no real reason for it, as in MkIV we
advise using the start-stop variant.

It will be clear that this kind of automated tagging brings with it a couple of
extra commands deep down in CoNTgXT and there (of course) we use symbolic
names for tags, so that one can overload the built-in mapping.

\setuptaglabeltext[en] [document=text]

As with other features inspired by viewer functionality, the implementation of
tagging is independent of the backend. For instance, we can tag a document
and access the tagging information at the TgX end. The backend driver code
maps tags to relevant ppr constructs. First of all, we just map the tags used
at the CoNTgXT end onto themselves. But, as validators expect certain names,
we use the ppF rolemap feature to map them to (less interesting) names. The
next list shows the currently used internal names, with the ppr ones between
parentheses.

combination (Span), combinationcaption (Span), combinationcontent (Span),
combinationpair (Span), construct (Span), delimited (Quote), delimitedblock
(BlockQuote), delimitedcontent (Span), delimitedsymbol (Span), description
(Div), descriptioncontent (Div), descriptionsymbol (Span), descriptiontag

(Div), division (Div), document (Div), float (Div), floatcaption (Caption),
floatcontent (P), floatlabel (Span), floatnumber (Span), floattext (Span),
formula (Div), formulacaption (Span), formulacontent (P), formulalabel (Span),
formulanumber (Span), formulaset (Div), highlight (Span), ignore (Span),
image (P), item (LI), itembody (Div), itemcontent (LBody), itemgroup (L),

Tagged PDF 103

itemhead (Div), itemtag (Lbl), label (Span), line (Code), lines (Code), link (Link),
list (TOC), listcontent (P), listdata (P), listitem (TOCI), listpage (Reference),
listtag (Lbl), maction (Span), margintext (Span), margintextblock (Span),

math (Div), merror (Span), metadata (Div), metavariable (Span), mfenced
(Span), mfrac (Span), mi (Span), mid (Span), mn (Span), mo (Span), mover
(Span), mpgraphic (P), mroot (Span), mrow (Span), ms (Span), msqrt (Span),
mstacker (Span), mstackerbot (Span), mstackermid (Span), mstackertop
(Span), msub (Span), msubsup (Span), msup (Span), mtable (Table), mtd (TD),
mtext (Span), mtr (TR), munder (Span), munderover (Span), number (Span),

p (P), paragraph (P), private (Span), register (Div), registercontent (Span),
registerentries (Div), registerentry (Div), registerlocation (Span), registerpage
(Span), registerpagerange (Span), registerpages (Span), registersection (Div),
registersee (Span), registerseparator (Span), registertag (Span), section (Sect),
sectioncontent (Div), sectionnumber (H), sectiontitle (H), sorting (Span), sub
(Span), subformula (Div), subsentence (Span), subsentencecontent (Span),
subsentencesymbol (Span), subsup (Span), sup (Span), synonym (Span),
table (Table), tablecell (TD), tablerow (TR), tabulate (Table), tabulatecell (TD),
tabulaterow (TR), verbatim (Code), verbatimblock (Code), verbatimline (Code),
verbatimlines (Code).

So, the internal ones show up in the tag trees as shown in the examples but
applications might use the rolemap which normally has less detail.

Because we keep track of where we are, we can also use that information for
making decisions.

\doifinelementelse{structure:section} {yes} {no}
\doifinelementelse{structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:chapter} {yes} {no}
\doifinelementelse{division:*-structure:*} {yes} {no}

As shown, you can use * as a wildcard. The elements are separated by -. If you
don’t know what tags are used, you can always enable the tag related tracker:

\enabletrackers[structure.tags]

This tracker reports the identified element chains to the console and log.

11.3 Special care

Of course there are a few complications. First of all the tagging model sort of
contradicts the concept of a nicely typeset document where structure and out-
come are not always related. Most TigX users are aware of the fact that TgX does

104 Tagged PDF

not have space characters and does a great job on kerning and hyphenation.
The tagging machinery on the other hand uses a rather dumb model of strings
separated by spaces.!® But we can trick TgX into providing the right informa-
tion to the backend so that words get nicely separated. The non-optimized
function that does this looks as follows:

function injectspaces(head)
local p
for n in node.traverse(head) do
local id = n.id
if id == node.id("glue") then
if p and p.id == node.id("glyph") then

local g = node.copy(p)
local s = node.copy(n.spec)
g.char, n.spec = 32, s
p.next, g.prev =g, p
g.next, n.prev =n, ¢
s.width = s.width - g.width
end
elseif id == node.id("hlist") or id == node.id("vlist") then
injectspaces(n.list,attribute)
end
p=n
end

end

Here we squeeze in a space (given that it is in the font which it normally is when
you use CoNTgXt) and make a compensation in the glue. Given that your page
sits in box 255, you can do this just before shipping the page out:

injectspaces(tex.box[255].1list)

Then there are the so-called suspects: things on the page that are not related
to structure at all. One is supposed to tag these specially so that the built-in
reading equipment is not confused. So far we could get around them simply
because they don't get tagged at all and therefore are not seen anyway. This
might well be enough of a precaution.

Of course we need to deal with mathematics. Fortunately the presentation
MatHML model is rather close to TigX and so we can map onto that. After all we
don’t need to care too much about back-mapping here. The currently present
code is rather experimental and might get extended or thrown out in favour of

15 The search engine on the other hand is rather clever on recognizing words.

Tagged PDF 105

inline MaTHML. Figure 11.3 demonstrates that a first approach does not even
look that bad. In future versions we might deal with table-like math constructs,
like matrices.

Content Order | Tags
-
=] @ Tags 1
E|<j <document>
O <verbatim> tagged
E|<j “math>
g <mrows
<j <mi>
<j <mo> 2 “."‘ b ’
& @ <msup> Y= (.‘J" + \",l ar + g)
EO <mrow>
O <mo>
O <msup>
O <mo>
E|<j <mroot>
O <mn>
EO <mrow>
O <mi>
O <mi>
<7 <mo>
E|<j “mrows
E@ =mfrac>
EIO <mrows
E|<j <mix
b
O <mrow>
O “mo>
O <mo>
O <mn>

$85 v = \left(x°2 + \root{3M\of{ax + {{bFover{3}}} \right) ~ 2 $§

Figure 11.3 Experimental math tagging.

This is a typical case where more energy has to be spent on driving the voice
of Acrobat but I will do that when we find a good reason.

As mentioned, it will take a while before all relevant constructs in ConNTgXT
support tagging, but support is already quite complete. Some screen dumps
are included as examples at the end.

11.4 Conclusion

Surprisingly, implementing all this didn’'t take that much work. Of course
detailed automated structure support from the complete ConTEXT kernel will
take some time to get completed, but that will be done on demand and when we
run into missing bits and pieces. It’s still not decided to what extent alternate
representations and alternate texts will be supported. Experiments with the
reading-aloud machinery are not satisfying yet but maybe it just can’t get any
better. It would be nice if we could get some tags being announced without
overloading the content, that is: without using ugly hacks.

106 Tagged PDF

And of course, code like this is never really finished if only because pDF evolves.
Also, it is yet another nice test case and torture test for LuaTgX and it helps us
to find buglets and oversights.

11.5 Some more examples

In CoNTgXT we have user definable verbatim environments. As with other user
definable environments we show the specific instance as comment next to the
structure component. See figure 11.4. Some examples of tables are shown in
figure 11.5. Future versions will have a bit more structure. Tables of contents
(see figure 11.6) and registers (see figure 11.7) are also tagged. (One might
wonder what the use is of this.) In figure 11.8 we see some examples of floats.
External images as well as MetaPost graphics are tagged as such. This example
also shows an example of a user environment, in this case:

\definestartstop[notabene] [style=\bf]
In a similar fashion, footnotes (figure 11.9) end up in the structure tree, but in

the typeset document they move around (normally forward when there is no
room).

Tagged PDF 107

Content Order | Tags

=] O' <document>
B4 <structure> chapter
1 Ch. apter G <structurenumber>
O <structuretitle>
= O <structurecontent=

=47 <paragraph>

test oeps test whow test

test W test
= G <werbatim=
‘\whatever [goes] {here} W oeps

B¢ test
=] G <construct> notabene
B whow
B test
= <verbatim> typing
B¢ test
= 0 <werbatim= TEX
¢ ‘whatever[goes]{ here}

Figure 11.4 Verbatim, including dedicated instances.

108 Tagged PDF

Content Order | Tags

i’_h -
Bl @ Tags
test 11|test 12 =7 <documents
test 21|test 22 =<7 <tablex
test 33 S <tr>
= O <td>
test Coming back B testll 1blishing: many of the
new typograj § <td> ation about the rules of
tvpography i & < the instruction manuals
which they g here is not so much ba-
sic instructio G < showing the differences
between gooc 51§ <tabulate> ople are just fascinated
by their PC B <row> program. called up on
the screen. w El@ <cell= On.
test Coming hack W test iblishing: many of the
new typograg & <cell> ation about the rules of

vpography instructi anuals
£ p_ﬂ_L,r*'Lphv fn & <ow the 111_r1'11|:t1{m manual
which they g here is not so much ba-
. N {3 < rows , ,
sic instruction showing the differences
< rows . .
hetween good G <row ople are just fascinated
by their PC's § <row> program, called up on

the screen, w O,

Figure 11.5 Natural tables as well as
the tabulate mechanism is supported.

Tagged PDF 109

Contents
1 One

1.1 alpha
1.2 heta

1.3 gamma
1.4 delta

Figure 11.6

110 Tagged PDF

Content Order | Tags
-
=] @ Tags
=] O <document>
=] @ <structure> title
& <structuretitle>
=7 <structurecontent>
= <list>
El O <listitern> chapter
=7 <listtag>
= !
=< <listcontent>
B¢ One
= O <listpage:>
& 2
O «<listitern> section
O <listitern> section
G «<listitern> section
@ «<listitern> section
< <structure> chapter

Tables of content with specific entries tagged.

S G T G C R]

Index
o
one 1.2
t
two 1, 2

Content Order | Tags
-
= @ Tags
=<7 <document>
O <division= frontpart
G <division> bodypart
El@ <division=> backpart
= O =structure> title
F <7 <structuretitle>
E|<j <structurecontent>
ElO <register> index
ElO <registersection>
El(j <registertag >
B o
El@ <registerentries>
El@ =registerentry>
B¢ one
El{j <registerpages>
El{j <registerpage>
= B
El(j <registerpage>
B2
G <registersection>

Figure 11.7 A detailed
view of registered is provided.

Tagged PDF 111

Content Order | Tags

-

=) @ Tags
EO <document>
EO <structure> chapter

1 chapter

) <structurenumber> Let’s see what a user defined command does: whow!
O <structuretitle»
B <structurecontent> a simple graphic
2§ <paragraph> Figure 1.1 test
¢ Let's see what a user defined command does:

EO <construct> notabene
& whow Figure 1.2 test
!
El O <float> figure
El O <floatcontent>
% asimple graphic
=+ <floatcaption>
EO <floattag>
¢ Figure1l
E‘O <floattext>
B test
O <float> figure
El O <float> figure
El O <floatcontent>
EO <image>
%# PathPathPath
=7 <floatcaption>
EO <mpgraphic>
B¢ Path
=47 <paragraph> Yet another paragraph.
%# Yet ancther paragraph.

Figure 1.3 test

Figure 11.8 Floats tags end up in text stream. Watch the user defined con-
struct.

112 Tagged PDF

sheep from the

Content Order | Tags

-1"'#-
= @ Tags
=47 <document>
= {3 <division> frontpart
= @ <structure> chapter
F <structuretitle>
= CI <structurecontent>
El@ <paragraph>

e first!
e second

The Earth, as {
in fact. It wom
presence is like
per day — and

whocares

B¢ We thrive in information--thick worlds because of ...

E|<:,3 <jtemgroup> itemize
E|<:3 <item:
{3 <jtemtag>
E|<__,a <itemcontent>
B¢ firstl
= CI <description> footnote
E|<j <descriptiontag=
H1
=47 <descriptioncontent>
g test
E|<:a <item:>
#47 <itemtag>
47 <itemcontent>
CI <paragraph=
G < description> whatever

1
test

Figure 11.9 Footnotes are shown at the place in the input (flow).

Tagged PDF 113

114 Tagged PDF

12 Including pages

12.1 Introduction

It is tempting to add more and more features to the backend code of the engine
but it is not really needed. Of course there are features that can best be sup-
ported natively, like including images. In order to include ppor images in LUATEX
the backend uses a library (xpdf or poppler) that can load an page from a file
and embed that page into the final ppF, including all relevant (indirect) objects
needed for rendering. In LuaTgX an experimental interface to this library is
included, tagged as epdf. In this chapter I will spend a few words on my first
attempt to use this new library.

12.2 The library

The interface is rather low level. I got the following example from Hartmut (who
is responsible for the LuaTgX backend code and this library).

local doc = epdf.open("luatexref-t.pdf")
local cat = doc:getCatalog()

local pag = cat:getPage(3)

local box = pag:getMediaBox()

local w = pag:getMediaWidth()

local h = pag:getMediaHeight()

local n = cat:getNumPages()

local m = cat:readMetadata()
print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)
print("mediabox: ", box.x1l, box.x2, box.yl, box.y2)

As you see, there are accessors for each interesting property of the file. Of
course such an interface needs to be extended when the ppr standard evolves.
However, once we have access to the so called catalog, we can use regular
accessors to the dictionaries, arrays and other data structures. So, in fact we
don’t need a full interface and can draw the line somewhere.

There are a couple of things that you normally do not want to deal with. A

pDF file is in fact just a collection of objects that form a tree and each object
can be reached by an index using a table that links the index to a position in

Including pages 115

the file. You don’t want to be bothered with that kind of housekeeping indeed.
Some data in the file, like page objects and annotations are organized in a
tree form that one does not want to access in that form, so again we have
something that benefits from an interface. But the majority of the objects are
simple dictionaries and arrays. Streams (these hold the document content,
image data, etc.) are normally not of much interest, but the library provides
an interface as you can bet on needing it someday. The library also provides
ways to extend the loaded pprF file. I will not discuss that here.

Because in ConNTEXT we already have the lpdf library for creating ppr struc-
tures, it makes sense to define a similar interface for accessing ppr. For that I
wrote a wrapper that will be extended in due time (read: depending on needs).
The previous code now looks as follows:

local doc epdf.open("luatexref-t.pdf")
local cat = doc.Catalog

local pag cat.Pages[3]

local box = pag.MediaBox

local llx, 1lly, urx, ury = box[1], box[2] box[3], box[4]

local w = urx - 1lx -- or: box.width
local h = ury - lly -- or: box.height
local n = cat.Pages.size

local m = cat.Metadata.stream
print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)
print("mediabox: ", 11x, 1ly, urx, ury)

If we write code this way we are less dependent on the exact ar1, especially
because the epdf library uses methods to access the data and we cannot easily
overload method names in there. When you look at the box, you will see that
the natural way to access entries is using a number. As a bonus we also provide
the width and height entries.

12.3 Merging links

It has always been on my agenda to add the possibility to carry the (link) anno-
tations with an included page from a document. This is not that much needed
in a regular document, but it can be handy when you use CoNTEXT to assem-
ble documents. In any case, such a merge has to happen in such a way that

116 Including pages

it does not interfere with other links in the parent document. Supporting this
in the engine is no option as each macro package follows its own approach to
referencing and interactivity. Also, demands might differ and one would end
up with a lot of (error prone) configurability. Of course we want scaled pages
to behave well too.

Implementing the merge took about a day and most of that time was spent on
experimenting with the epdf library and making the first version of the wrapper.
I definitely had expected to waste more time on it. So, this is yet another
example of extensions that are quite doable in the Lua-TgX mix. Of course it
helps that the CoNTgXt graphic inclusion code provides enough information
to integrate such a feature. The merge is controlled by the interaction key, as
shown here:

\externalfigure[somefile.pdf][page=1,scale=700,interaction=yes]
\externalfigure[somefile.pdf][page=2,scale=600,interaction=yes]
\externalfigure[somefile.pdf][page=3,scale=500,interaction=yes]

You can finetune the merge by providing a list of options to the interaction
key but that’s still somewhat experimental. As a start the following links are
supported.

e internal references by name (often structure related)

e internal references by page (e.g. table of contents)

e external references by file (optionally by name and page)
e references to uri’s (normally used for webpages)

When users like this functionality (or when I really need it myself) more types of
annotations can be added although support for JavaScript and widgets doesn’t
make much sense. On the other hand, support for destinations is currently
somewhat simplified but at some point we will support the relevant zoom op-
tions.

The implementation is not that complex:

e check if the included page has annotations

e loop over the list of annotations and determine if an annotation is supported
(currently links)

e analyze the annotation and overlay a button using the destination that be-
longs to the annotation

Now, the reason why we can keep the implementation so simple is that we

just map onto existing ConTgXt functionality. And, as we have a rather inte-
grated support for interactive actions, only a few basic commands are involved.

Including pages 117

Although we could do that all in Lua, we delegate this to TgX. We create a layer
which we put on top of the image. Links are put onto this layer using the
equivalent of:

\setlayer
[epdflinks]
[Xx=...,y=...,preset=leftbottom]
{\button
[width=...,height=...,0offset=overlay, frame=o0ff]
{}% no content
[...1}}

The \button command is one of those interaction related commands that ac-
cepts any action related directive. In this first implementation we see the fol-
lowing destinations show up:

somelocation
url(http://www.pragma-ade.com)
file(somefile)
somefile::somelocation
somefile: :page(10)

References to pages become named destinations and are later resolved to page
destinations again, depending on the configuration of the main document. The
links within an included file get their own namespace so (hopefully) they will
not clash with other links.

We could use lower level code which is faster but we're not talking of time
critical code here. At some point I might optimize the code a bit but for the
moment this variant gives us some tracing options for free. Now, the nice
thing about using this approach is that the already existing cross referencing
mechanisms deal with the details. Each included page gets a unique reference
so references to not included pages are ignored simply because they cannot be
resolved. We can even consider overloading certain types of links or ignoring
named destinations that match a specific pattern. Nothing is hard coded in
the engine so we have complete freedom of doing that.

12.4 Merging layers

When including graphics from other applications it might be that they have
their content organized in layers (that then can be turned on or off). So it
will be no surprise that on the agenda is merging layer information: first a
straightforward inclusion of optional content dictionaries, but it might make

118 Including pages

sense to parse the content stream and replace references to layers by those
that are relevant in the main document. Especially when graphics come from
different sources and layer names are inconsistent some manipulation might
be needed so maybe we need more detailed control. Implementing this is is no
big deal and mostly a matter of figuring out a clean and simple user interface.

Including pages 119

120 Including pages

13 Exporting XML

13.1 Introduction

Every now and then on the the mailing list users ask if ConTiEXT can produce
HTML instead of for instance ppr, and the answer has always been unsatisfying.
In this chapter I will present the MkIV way of doing this.

13.2 The clumsy way

My favourite answer to the question about how to produce HTML (or more gen-
eral xMmL as it can be transformed) has always been: “I'd just typeset it!”. Take:

\def\MyChapterCommand#1#2{<h1>#2</h1>}
\setuphead[chapter][command=\MyChapterCommand]

Here \chapter{Hello World} will produce:
<h1>Hello World</hl>

Now imagine that you hook such commands into all relevant environments and
that you use a style with no header and footer lines. You use a large page (A2)
and a small monospaced font (4pt) so that page breaks will not interfere too
much. If you want columns, fine, just hook in some code that typesets the
final columns as tables. In the end you will have an ugly looking ppr file but
by feeding it into pdftotext you will get a nicely formatted nTmL file.

For some languages of course encoding issues would show up and there can
be all kind of interferences, so eventually the amount of code dealing with it
would have accumulated. This is why we don’t follow this route.

An alternative is to use tex4ht which does an impressive job for IXIEX, and
supports CoNTEXT to some extent as well. As far as I know it overloads some
code deep down in the kernel which is something ‘not done’ in the CoNTgXT
universe if only because we cannot keep control over side effects. It also com-
plicates maintainance of both systems.

In MkIV however, we do have the ability to export the document to a structured
xML file so let’s have a look at that.

Exporting XML 121

16

13.3 Structure

The ability to export to some more verbose format depends on the availability
of structural information. As we already tag elements for the sake of tagged
PDF, it was tempting to see how well we could use those tags for exporting to
xML. In principle it is possible to use Acrobat Professional to export the content
using tags but you can imagine that we get a better quality if we stay within
the scope of the producing machinery.

\setupbackend[export=yes]

This is all you need unless you want to fine tune the resulting xmv file. If you
are familiar with tagged ppr support in CoNTgXT, you will recognize the result.
When you process the following file:

\setupbackend[export=yes]

\starttext

\startchapter[title=Test]

A paragraph.\par Another paragraph.

\stopchapter

\stoptext

You will get a file with the suffix export that looks as follows:!6

It's no big deal to postprocess such a file. In that case one can for instance
ignore the chapter number or combine the number and the title. Of course

rendering information is lost here. However, sometime it makes sense to export
some more details. Take the following table:

\starttext

\bTABLE
\bTR \bTD test 1.1 \eTD \bTD[ny=2] test 1.2 \eTD \eTR
\bTR \bTD test 2.1 \eTD \eTR
\bTR \bTD test 3.1 \eTD \bTD test 3.2 \eTD \eTR
\bTR \bTD test 4.1 \eTD \bTD \eTD \eTR

\bTR \bTD[nx=2,align=flushright] test 5.1 \eTD \eTR
\eTABLE

We will omit the topmost lines in following examples.

122 Exporting XML

\stoptext

Here we need to preserve the span related information as well as cell specific
alignments as for tables this is an essential part of the structure.

The tabulate mechanism is quite handy for regular text especially when the
content of cells has to be split over pages. As each line in a paragraph in a
tabulate becomes a cell, we need to reconstruct the paragraphs from the (split)
alignment cells.

\starttext

\starttabulate[|l|p]|r]|]
\NC zero \NC line one \par line two \par line three \NC 0 \NC \NR

% \NC one \NC \input zapf \par \input zapf \NC 1 \NC \NR
\NC two \NC before \type {connect} \par after \NC 2 \NC \NR
\NC three \NC before \type {connect} after \NC 3 \NC \NR
\NC four \NC before \break inbetween \par after \NC 4 \NC \NR
\stoptabulate
\stoptext

This becomes:

The <break/> elements are injected automatically between paragraphs. We
could tag each paragraph individually but that does not work that well when
we have for instance a quotation that spans multiple paragraphs (and maybe
starts in the middle of one). An empty element is not sensitive for this and is
still a signal that vertical spacing is supposed to be applied.

13.4 The implementation

We implement tagging using attributes. The advantage of this is that it does not
interfere with typesetting, but a disadvantage is that not all parent elements
are visible. When we encounter some content, we're in the innermost element
so if we want to do something special, we need to deduce the structure from
the current child. This is no big deal as we have that information available at
each child element in the tree.

The first implementation just flushed the xmL on the fly (i.e. when traversing

the node list) but when I figured out that collapsing was needed for special
cases like tabulated paragraphs this approach was no longer valid. So, after

Exporting XML 123

17
18

some experiments I decided to build a complete structure tree in memory'”.
This permits us to handle situations like the following:

\starttext

\startitemize[n]
\startitem one \stopitem
\startitem two \stopitem
\stopitemize

\startitemize[packed,a]
\startitem \quote{one} \stopitem
\startitem \quote{two} \stopitem
\stopitemize

\stoptext
Here we get:

The symbol and packed attributes are first seen at the itemcontent level (the
innermost element) so when we flush the itemgroup element’s attributes we
need to look at the child elements (content) that actually carry the attribute.!®

I already mentioned collapsing. As paragraphs in a tabulate get split into cells,
we encounter a mixture that cannot be flushed sequentially. However, as each
cell is tagged uniquely we can append the lines within a cell. Also, as each
paragraph gets a unique number, we can add breaks before a new paragraph
starts. Collapsing and adding breakpoints is done at the end, and not per page,
as paragraphs can cross pages. Again, thanks to the fact that we have a tree,
we can investigate content and do this kind of manipulations.

Moving data like footnotes are somewhat special. When notes are put on the
page (contrary to for instance end notes) the so called ‘insert’ mechanism is
used where their content is kept with the line where it is defined. As a result
we see them end up instream which is not that bad a coincidence. However,
as in MkIV notes are built on top of (enumerated) descriptions, we need to
distinguish them somehow so that we can cross reference them in the export.

\starttext

\startchapter[title=Notes]

We will see if this tree will be used for other purposes in the future.
Only glyph nodes are investigated for structure.

124 Exporting XML

test \footnote[a]{note a}
test \footnote[b]{note b}

\stopchapter
\stoptext
Currently this will end up as follows:
Graphics are also tagged and the image element reflects the included image.
\starttext
\placefigure

[here] [fig:cow]

{It looks like a cow.}

{\externalfigure[cow.pdf]}
\stoptext
If the image sits on another path then that path shows up in an attribute and
when a page other than 1 is taken from the (pdf) image, it gets mentioned as
well.
Cross references are another relevant aspect of an export. In due time we will
export them all. It’s not so much complicated because all information is there
but we need to hook some code into the right spot and making examples for
those cases takes a while as well.
\setupinteraction[state=start]
\starttext
\startchapter[title=0ne, reference=alpha]

In \in{chapter}[beta]
\stopchapter
\startchapter[title=Two, reference=beta]

In \in{chapter}[alphal

\stopchapter

\stoptext

Exporting XML 125

We export references in the ConTgXt specific way, so no interpretation takes
place.

As CoNTgXT has an integrated referencing system that deals with internal as
well as external references, url’s, special interactive actions like controlling
widgets and navigations, etc. and we export the raw reference specification as
well as additional attributes that provide some detail.
\setupinteraction[state=start]
\useurl [pragma] [www.pragma-ade.com]
\starttext
\startparagraph

You can visit \goto{pragma}[url(www.pragma-ade.com)].
\stopparagraph
\startparagraph

You can visit \goto{pragma}[url(pragma)].
\stopparagraph

\stoptext

Of course, when postprocessing the exported data, you need to take these vari-
ants into account.

13.5 Math

Of course there are limitations. For instance TgXies doing math might wonder
if we can export formulas. To some extent the export works quite well.

\starttext

Is it $ e = mc™2 $ maybe:
\startformula

m = \frac{\sqrt{e}}{c}
\stopformula

\stoptext

This results in the usual rather verbose presentation MaTHML:

126 Exporting XML

More complex math (like matrices) will be dealt with in due time as for this
Aditya and I have to take tagging into account when we revisit the relevant
code as part of the MKIV cleanup and extensions. It's not that complex but it
makes no sense to come up with intermediate solutions.

Display verbatim is also supported. In this case we tag individual lines.
\starttext

\starttyping

line one

line two
\stoptyping

\stoptext
The export is not that spectacular:

A rather special case are marginal notes. We do tag them because they often
contain usefull information.

\starttext
\startparagraph
test \inleft{left 1} test
\stopparagraph
\margintitle{left 2}
\startparagraph
test test
\stopparagraph
\startparagraph
\inrightmargin{\slanted{right 1}}test
\stopparagraph
\stoptext

The output is currently as follows:

However, this might change in future versions.

Exporting XML 127

13.6 Formatting

The output is formatted using indentation and newlines. The extra run time
needed for this (actually, quite some of the code is related to this) is compen-
sated by the fact that inspecting the result becomes more convenient. Each
environment has one of the properties inline, mixed and display. A display
environment gets newlines around it and an inline environment none at all.
The mixed variant does something in between. In the following example we tag
some user elements, but you can as well influence the built in ones.

\setelementnature[display][display]
\setelementnature[inline] [inline]
\setelementnature[mixed] [mixed]

\starttext

\startelement[display]
\startelement[inline]
test
\startelement[display]
test
\stopelement
test
\stopelement
\stopelement

\stoptext
This results in:

Keep in mind that elements have no influence on the typeset result apart from
introducing spaces when used this way (this is not different from other TgX
commands). In due time the formatting might improve a bit but at least we
have less chance ending up with those megabyte long one-liners that some
applications produce.

13.7 A word of advise

In (for instance) HTML class attributes are used to control rendering driven by
stylesheets. In CoNTEXT you can often define derived environments and their
names will show up in the detail attribute. So, if you want control at that level
in the export, you'd better use the structure related options built in ConNTEXT,
for instance:

128 Exporting XML

\definehead[specialsection][section]
\starttext
\startsection[title=Normal section]
normal
\stopsection
\startspecialsection[title=Special section]
special
\stopspecialsection

\stoptext

This gives two different sections:

13.8 Conclusion

It is an open question if such an export is useful. Personally I never needed
a feature like this and there are several reasons for this. First of all, most of
my work involves going from (often complex) xmL to ppF and if you have xmL
as input, you can also produce HTML from it. For documents that relate to
CoNTgXt I don’t need it either because manuals are somewhat special in the
sense that they often depend on showing something that ends up on paper (or
its screen counterpart) anyway. Loosing the makeup also renders the content
somewhat obsolete. But this feature is still a nice proof of concept anyway.

Exporting XML 129

130 Exporting XML

14 Optimizations again

14.1 Introduction

Occasionally we do some timing on new functionality in either LuaTgX or MKIV,
so here’s another wrapup.

14.2 Font loading

In ConTEXT we cache font data in a certain way. Loading a font from the cache
takes hardly any time. However, preparation takes more time as well memory
as we need to go from the fontforge ordering to one we can use. In MkIV we
have several font tables:

e The original fontforge table: this one is only loaded once and converted to
another representation that is cached.

e The cached font representation that is the basis for further manipulations.

e In base mode this table is converted to a (optionally cached) scaled Trm table
that is passed to TgX.

e In node mode a limited scaled version is passed to TgX. As with base mode,
this table is kept in memory so that we can access the data.

e When processing features in node mode additional (shared) subtables are
created that extend the memorized catched table.

This model is already quite old and dates from the beginning of MkIV. Future
versions might use different derived tables but for the moment we need all this
data if only because it helps us with the development.

The regular method to construct a font suitable for TEX, either or not using
base mode or node mode in MKIV, is to load the font as table using to table,
a fontloader method. This means that all information is available (and can
be manipulated). In MkIV this table is converted to another one and in the
process new entries are added and existing ones are freed. Quite some garbage
collection and table resizing takes place in the process. In the cached instance
we share identical tables so there we can gain a lot of memory and avoid garbage
collection.

The difference in usage is as follows:
do

local f
local t

fontloader.open("somefont.otf") -- allocates font object
fontloader.to table(f) -- allocates table

Optimizations again 131

fontloader.close(f) -- frees font object
for index, glyph in pairs(t) do
local width = glyph.width -- accesses table value
end
end -- frees table

Here t is a complete Lua table and it can get quite large: script fonts like Zapfino
(for latin) or Husayni (for arabic) have lots of alternate shapes and much fea-
tures related information, fonts meant for cok usage have tens of thousands
of glyphs, and math fonts like Cambria have many glyphs and math specific
information.

do
local f = fontloader.open("somefont.otf") -- allocates font object
for index=0, t.glyphmax-1 do
local glyph = f.glyphs[index] -- assigns user data object
if glyph then
local width = glyph.width -- calls virtual table value
end
end
fontloader.close(f) -- frees font object
end

In this case there is no big table, and glyph is a so called userdata object. Its
entries are created when asked for. So, where in the first example the width
of a glyph is a number, in the second case it is a function disguised as virtual
key that will return a number. In the first case you can change the width, in
the second case you can't.

This means that if you want to keep the data around you need to copy it into
another table but you can do that stepwise and selectively. Alternatively you
can keep the font object in memory. As some glyphs can have much data you
can imagine that when you only need to access the width, the userdata method
is more efficient. On the other hand, if you need access to all information, the
first method is more interesting as less overhead is involved.

In the userdata variant only the parent table and its glyph subtable are virtu-
alized, as are entries in an optional subfonts table. So, if you ask for the kerns

table of a glyph you will get a real table as it makes no sense to virtualize it. A

way in between would have been to request tabls per glyph but as we will see

there is no real benefit in that while it would further complicate the code.

When in LuaTiX 0.63 the loaded font object became partially virtual it was time

132 Optimizations again

19

to revision the loading code to see if we could benefit from this.

In the following tables we distinguish three cases: the original but adapted
loading code!®, already a few years old, the new sparse loading code, using the
userdata approach and no longer a raw table, and a mixed approach where
we still use the raw table but instead of manipulating that one, construct a
new one from it. It must be noticed that in the process of integrating the new
method the traditional method suffered.

First we tested Oriental TigX's Husayni font. This one has lots of features, many
of lookups, and quite some glyphs. Keep in mind that the times concern the
preparation and not the reload from the cache, which is more of less neglectable.
The memory consumption is a snapshot of the current run just after the font
has been loaded. Peak memory is what bothers most users. Later we will
explain what the values between parenthesis refer to.

used memory peak memory font loading time

table 113 MB (102) 118 MB (117) 1.8 sec (1.9)
mixed 114 MB (103) 119 MB (117) 1.9 sec (1.9)
sparse 117 MB (104) 121 MB (120) 1.9 sec (2.0)
cached 75 MB 80 MB 0.4 sec
baseline 67 MB 71 MB 0.3 sec

So, here the new method is not offering any advantages. As this is a font we
use quite a lot during development, any loading variant will do the job with
similar efficiency.

Next comes Cambria, a font that carries lots of glyphs and has extensive sup-
port for math. In order to provide a complete bodyfont setup some six instances

are loaded. Interesting is that the original module needs 3.9 seconds instead if
6.4 which is probably due to a different ordering of code which might influence

the garbage collector and it looks like in the reorganized code the garbage col-
lector kicks in a few times during the font loading. Already long ago we found

out that this is also somewhat platform dependent.

used memory peak memory font loading time

table 155 MB (126) 210 MB (160) 6.4 sec (6.8)
mixed 154 MB (130) 210 MB (160) 6.3 sec (6.7)
sparse 140 MB (123) 199 MB (144) 6.4 sec (6.8)

For practical reasons we share as much odd as possible between the methods so some reorga-
nization was needed.

Optimizations again 133

cached 90 MB 94 MB 0.6 sec
baseline 67 MB 71 MB 0.3 sec

Here the sparse method reports less memory usage. There is no other gain
as there is a lot of access to glyph data due to the fact that this font is rather
advanced. More virtualization would probably work against us here.

Being a cJk font, the somewhat feature-dumb but large AdobeSongStd-Light
has lots of glyphs. In previous tables we already saw values between paren-
thesis: these are values measured with implicit calls to the garbage collector
before writing the font to the cache. For this font much more memory is used
but garbage collection has a positive impact on memory consumption but dras-
tic consequences for runtime. Eventually it’s the cached timing that matters
and that is a constant factor but even then it can disturb users if a first run
after an update takes so much time.

used memory peak memory font loading time

table 180 MB (125) 185 MB (172) 4.4 sec (4.5)
mixed 190 MB (144) 194 MB (181) 4.4 sec (4.7)
sparse 153 MB (119) 232 MB (232) 8.7 sec (8.9)
cached 96 MB 100 MB 0.7 sec
baseline 67 MB 71 MB 0.3 sec

Peak memory is quite high for the sparse method which is due to the fact that
we have only glyphs (but many) so we have lots of access and small tables being
created and collected. I suspect that in a regular run the loading time is much
lower for the sparse case because this is just too much of a difference.

The last test loaded 40 variants of Latin Modern. Each font has reasonable
number of glyphs (covering the latin script takes some 400-600 glyphs), the
normal amount of kerning, but hardly any features. Reloading these 40 fonts
takes about a second.

used memory peak memory font loading time

table 204 MB (175) 213 MB (181) 13.1 sec (16.4)
mixed 195 MB (168) 205 MB (174) 13.4 sec (16.5)
sparse 198 MB (165) 202 MB (170) 13.4 sec (16.6)
cached 147 MB 151 MB 1.7 sec
baseline 67 MB 71 MB 0.3 sec

The old method wins in runtime and this makes it hard to decide which strategy
to follow. Again the numbers between parenthesis show what happens when

134 Optimizations again

we do an extra garbage collection sweep after packaging the font instance. A
few more sweeps in other spots will bring down memory a few megabytes but
at the cost of quite some runtime. The original module that uses the table
approach is 3 seconds faster that the current one. As the code is essentially
the same but organized differently again we suspect the garbage collector to be
the culprit.

So when we came this far, Taco and I did some further tests and on his machine
Taco ran a profiler on some of the tests. He posted the following conclusion to
the LuaTgX mailing list:

It seems that the userdata access is useful if but only if you are very
low on memory. In other cases, it just adds extra objects to be garbage
collected, which makes the collector slower. That is on top of extra time
spent on the actual calls, and even worse: those extra gc objects tend
to be scattered around in memory, resulting in extra minor page faults
(cpu cache misses) and all that has a noticeable effect on run speed: the
metatable based access is 20-30% slower than the old massive to table.

Therefore, there seems little point in expanding the metadata functional-
ity any further. What is there will stay, but adding more metadata objects
appears to be a waste of time on all sides.

This leaves us with a question: should we replace the old module by the exper-
imental one? It makes sense to do this as in practice users will not be harmed
much. Fonts are cached and loading a cached font is not influenced. The new
module leaves the choice to the user. He or she can decide to limit memory
usage (for cache building) by using directives:

\enabledirectives[fonts.otf.loader.method=table]
\enabledirectives|[fonts.otf.loader.method=mixed]
\enabledirectives[fonts.otf.loader.method=sparse]

\enabledirectives[fonts.otf.loader.cleanup]

\enabledirectives[fonts.otf.loader.cleanup=1]
\enabledirectives[fonts.otf.loader.cleanup=2]
\enabledirectives[fonts.otf.loader.cleanup=3]

The cleanup has three levels and each level adds a garbage collection sweep (in
a different spot). Of course three sweeps per font that is prepared for caching
has quite some impact on performance. If your computer has enough memory
it makes no sense to use any of these directives. For the record: these directives
are not available in the generic (plain TgX) variant, at least not in the short
term. As Taco mentions, cache misses can have drastic consequences and

Optimizations again 135

we've ran into that years ago already when support for OpENTYPE math was
added to LuaTgX: out of a sudden and without no reason passing a font table
to TigX became twice as slow on my machine. This is comparable with the new,
reorganized table loader being slower than the old one. Eventually I'll get back
that time, which is unlikely to happen with the unserdata variant where there
is no way to bring down the number of function calls and intermediate table
creation.

The previously shown values that concern all fonts including creating, caching,
reloading, creating a scaled instance and passing the data to TgX. In that
process quite some garbage collection can happen and that obscures the real
values. However, in MKIV we report the conversion time when a font gets cached
so that the user at least sees something happening. These timings are on a
per font base. Watch the following values:

table sparse
song 3.2 3.6
cambria 4.9(0.91.00.91.10.50.5) 5.6(1.11.11.01.20.60.6)
husayni 1.2 1.3

In the case of Cambria several fonts are loaded including subfonts from TRUETYPE
containers. This shows that the table variant is definitely faster. It might be
that later this is compensated by additional garbage collection but that would
even worsen the sparse case were more extensive userdata be used. These
values more reflect what Taco measured in the profiler. Improvements to the
garbage collector are more likely to happen than a drastic speed up in function
calls so the table variant is still a safe bet.

There are a few places where the renewed code can be optimized so these num-
bers are not definitive. Also, the loader code was not the only code adapted. As
we cannot manipulate the main table in the userdata variant, the code related
to patches and extra features like tlig, trep and anum had to be rewritten as
well: more code and a bit more close to the final table format.

table sparse

hybrid 310 MB / 10.3 sec 285 MB / 10.5 sec
mk 884 MB / 47.5 sec 878 MB / 48.7 sec

The timings in the previous table concern runs of a few documents where the
mk loads quite some large and complex fonts. The runs are times with an empty
cache so all fonts are preprocessed. The memory consumption is the peak load
as reported by the task manager and we need to keep in mind that Lua allocates
more than it needs. Keep in mind that these values are so high because fonts

136 Optimizations again

are created. A regular run takes less memory. Interesting is that for mk the
original implementation performs better but the difference is about a second
which again indicates that the garbage collector is a major factor. Timing only
the total runtime gives:

cached original table sparse
mk 38.1sec 75.5sec 77.2sec 80.8 sec

Here we used the system timer while in previous tables we used the values as
reported by the timers built in MKIV (and only reported the font loading times).

The timings above are taken on my laptop running Windows 7 and this is not
that good a platform for precise timings. Tacos measurements were done with
specialized tools and should be trusted more. It looks indeed that the current
level of userdata support is about the best compromise one can get.

In the process I also experimented with virtualizing the final TFm table, thereby
simulating the upcoming virtualization of that table in LUATEX. Interesting is that
Jor (for instance) mk . pdf memory consumption went down with 20% but that docu-
ment is non-typical and loades many fonts, including vitual punk _fonts. However,
as access to that tables happens infrequently virtualization makes muich sense
there, again only at the toplevel of the characters subtable.

14.3 Hyperlinks

At Pracma ADE we have a long tradition of creating highly interactive docu-
ments. I still remember the days that processing a 20.000 page document
with numerous menus and buttons on each page took a while to get finished,
especially if each page has a MetaPost graphic as well.

On a regular computer a document with so many links is no real problem. After
all, the ppF format is designed in such a way that only the partial content has
to be loaded. However, half a million hyperlinks do demand some memory.

Recently I had to make a document that targets at one of these tablets and
it is no secret that tablets (and e-readers) don’'t have that much memory. As
in CoNTgXT MKIV we have a bit more control over the backend, it will be no
surprise that we are able to deal with such issues more comfortable than in
MKII.

That specific document (part of a series) contained 1100 pages and each page
has a navigation menu as well as an alphabetic index into the register. There

Optimizations again 137

is a table of contents refering to about 200 chapters and these are backlinked
to the table of contents. There are some also 200 images and tables that end
up elsewhere and again are crosslinked. Of course there is the usual bunch of
inline hyperlinks. So, in total this document has some 32.000 hyperlinks. The
input is a 3.03 MB xwmL file.

size one run
don’t optimize 5.76 MB 59.4 sec
prefer page references over named ones 5.66 MB 56.2 sec
agressively share similar references 5.19 MB 60.2 sec
optimize page as well as similar references 5.11 MB 56.5 sec
disable all interactive features 4.19 MB 42.7 sec

So, by aggressively sharing hyperlinks and turning all internal named destina-
tions into page destinations we bring down the size noticeably and even have
a faster run. It is for this reason that aggressive sharing is enabled by default.
I you don’t want it, you can disable it with:

\disabledirectives[refences.sharelinks]

Currently we use names for internal (automatically generated) links. We can
force page links for them but still use names for explicit references so that we
can reach them from external documents; this is called mixed mode. When
no references from outside are needed, you can force pagelinks. At some point
mixed mode can become the default.

\enabledirectives[references.linkmethod=page]

With values: page, mixed, names and yes being equivalent to page. The MKII
way of setting this is still supported:

\setupinteraction[page=yes]

We could probably gain quite some more bytes by turning all repetitive elements
into shared graphical objects but it only makes sense to spend time on that
when a project really needs it (and pays for it). There is upto one megabyte of
(compressed) data related to menus and other screen real estate that qualifies
for this but it might not be worth the trouble.

The reason for trying to minimize the amount of hyperlink related metadata
(in pDF terminology annotations) is that on tablets with not that much memory
(and no virtual memory) we don’t want to keep too much of that (redundant)
data in memory. And indeed, the optimized document feels more responsive

138 Optimizations again

than the dirty version, but that could as well be related to the viewing applica-
tions.

14.4 Constants

Not every optimization saves memory of runtime. They are more optimizations
due to changes in circumstances. When TgX had only 256 registers one had
to find ways to get round this. For instance counters are quite handy and you
could quickly run out of them. In ConTXT there are two ways to deal with this.
Instead of a real count register you can use a macro:

\newcounter \somecounter
\increment \somecounter
\decrement (\somecounter,4)

In MKIV many such pseudo counters have been replaced by real ones which is
somewhat faster in usage.

Often one needs a constant and a convenient way to define such a frozen
counter is:

\chardef \myconstant 10
\ifnum \myvariable = \myconstant
\ifcase \myconstant ...

This is both efficient and fast and works out well because TgX treats them
as numbers in comparisons. However, it is somewhat clumsy, as constants
have nothing to do with characters. This is why all such definitions have been
replaced by:

\newconstant \myconstant 10
\setconstant \myconstant 12

\ifnum \myvariable = \myconstant
\ifcase \myconstant ...

We use count registers which means that when you set a constant, you can
just assign the new value directly or use the \setcounter macro.

We already had an alternative for conditionals:
\newconditional \mycondition

\settrue \mycondition
\setfalse \mycondition

Optimizations again 139

\ifconditional \mycondition
These will also be adapted to counts but first we need a new primitive.

The advantage of these changes is that at the Lua end we can consult as well
as change these values. This means that in the end much more code will be
adapted. Especially changing the constants resulted in quite some cosmetic
changes in the core code.

14.5 Definitions

Another recent optimization was possible when at the Luaend settings lccodes

cum suis and some math definitions became possible. As all these initializa-
tions take place at the Lua end till then we were just writing TgX code back to

TEX, but now we stay at the Luaend. This not only looks nicer, but also results

in a slightly less memory usage during format generation (a few percent). Mak-
ing a format also takes a few tenths of a second less (again a few percent). The

reason why less memory is needed is that instead of writing tens of thousands

\lccode related commands to TigX we now set the value directly. As writes to

TiX are collected, quite an amount of tokens get cached.

All such small improvements makes that CoNTgXT MKIV runs smoother with
each advance of LuaTgX. We do have a wishlist for further improvements but
so far we managed to improve stepwise instead of putting too much pressure
on LuaTEX development.

140 Optimizations again

15 Characters with special meanings

15.1 Introduction

When TEX was designed UnicobpE was not yet available and characters were
encoded in a seven or eight bit encoding, like asci or EBcbpIc. Also, the layout
of keyboards was dependent of the vendor. A lot has happened since then:
more and more UnicoDpE has become the standard (with utr as widely used
way of efficiently coding it).

Also at that time, fonts on computers were limited to 256 characters at most.
This resulted in TigX macro packages dealing with some form of input encoding
on the one hand and a font encoding on the other. As a side effect of character
nodes storing a reference to a glyph in a font hyphenation was related to font
encodings. All this was quite okay for documents written in English but when
TEX became pupular in more countries more input as well as font encodings
were used.

Of course, with LuaTgX being a Unicopk engine this has changed, and even
more because wide fonts (either Typel or OPENTYPE) are supported. However,
as TgX is already widely used, we cannot simply change the way characters are
treated, certainly not special ones. Let’s go back in time and see how plain TgX
set some standards, see how CoNTgXt does it currently, and look ahead how
future versions will deal with it.

15.2 Catcodes

Traditional TgX is an eight bit engine while LuaTgX extends this to utr input
and internally works with large numbers.

In addition to its natural number (at most OxFF for traditional TgX and upto
Ox10FFFF for LuaTiX), each character can have a so called category code, or
catcode. This code determines how TEX will treat the character when it is seen
in the input. The category code is stored with the character so when we change
such a code, already read characters retain theirs. Once typeset a character
can have turned into a glyph and its catcode properties are lost.

There are 16 possible catcodes that have the following meaning:
O escape This starts an control sequence. The scanner reads the

whole sequence and stores a reference to it in an efficient
way. For instance the character sequence \relax starts

Characters with special meanings 141

N

10

11

12

13

14

15

begin group
end group
math shift
alignment tab

end line

parameter

superscript

subscript
ignored
space

letter

other
active
comment

invalid

with a backslash that has category code zero and TEX
reads on till it meets non letters. In macro definitions a
reference to the so called hash table is stored.

This marks the begin of a group. A group an be used to
indicate a scope, the content of a token list, box or macro
body, etc.

This marks the end of a group.

Math starts and ends with characters tagged like this.
Two in a row indicate display math.

Characters with this property indicate a next entry in an
alignment.

This one is somewhat special. As line endings are oper-
ating system dependent, they are normalized to character
13 and by default that one has this category code.

Macro parameters start with a character with this cate-
gory code. Such characters are also used in alignment
specifications. In nested definitions, multiple of them in
a row are used.

Tagged like this, a character signals that the next token
(or group) is to be superscripted. Two such characters in
a row will make the parser treat the following character
or lowercase hexadecimal number as specification for a
replacement character.

Codes as such, a character signals that the next token (or
group) is to be subscripted.

When a character has this category code it is simply ig-
nored.

This one is also special. Any character tagged as such is
converted to the ascu space character with code 32.
Normally this are the characters that make op sequences
with a meaning like words. Letters are special in the sense
that macro names can only be made of letters. The hy-
phenation machinery will normally only deal with letters.
Examples of other characters are punctuation and special
symbols.

This makes a character into a macro. Of course it needs
to get a meaning in order not to trigger an error.

All characters on the same line after comment characters
are ignored.

An error message is issued when an invalid character is
seen. This catcode is probably not assigned very often.

So, there is a lot to tell about these codes. We will not discuss the input parser
here, but it is good to know that the following happens.

142

Characters with special meanings

e The engine reads lines, and normalizes cariage return and linefeed sequences.

e Each line gets a character with number \endlinechar appended. Normally
this is a character with code 13. In LuaTgX a value of —1 will disable this
automatism.

e Normally spaces (characters with the space property) at the end of a line
are discarded.

e Sequences like *"A are converted to characters with numbers depending on
the position in ascri vector: ~"@ is zero, ~"A is one, etc.

e Sequences like “*1f are converted to characters with a number similar to
the (lowercase) hexadecimal part.

Hopefully this is enough background information to get through the following
sections so let’s stick to a simple example:

\def\test#1{$x {#1}$}

Here there are two control sequences, starting with a backslash with category
code zero. Then comes an category 6 character that indicates a parameter that
isreferenced later on. The outer curly braces encapsulate the definition and the
inner two braces mark the argument to a subscript, which itself is indicated
by an underscore with category code 8. The start and end of mathmode is
indicated with a dollar sign that is tagged as math shift (category code 3). The
character x is just a letter.

Given the above description, how do we deal with catcodes and newlines at the
Lua end? Catcodes are easy: we can print back to TgX using a specific catcode
regime (later we will see a few of those regimes). As character 13 is used as
default at the TgX end, we should also use it at the Lua end, i.e. we should use
\r as line terminator (\endlinechar). On the other hand, we have to use \n
(character 10, \newlinechar) for printing to the terminal, log file, of TgX output
handles, although in ConTgXrt all that happens via Lua anyway, so we don’t
bother too much about it here.

There is a pitfall. As TgX reads lines, it depends on the file system to provide
them: it fetches lines or whatever represents the same on block devices. In
LuaTEX the implementation is similar: if you plug in a reader callback, it has
to provide a function that returns a line. Passing two lines does not work out
as expected as TgX discards anything following the line separator (cr, 1f or crlf)
and then appends a normalized endline character (in our case character 13).
At least, this is what TigX does naturally. So, in callbacks you can best feed line
by line without any of those characters.

When you print something from Lua to TgX the situation is slightly different:

Characters with special meanings 143

\startluacode
tex.print("line 1\r line 2")
tex.print("line 3\n line 4")
\stopluacode

This is what we get:
line 1 line 3 line 4

The explicit \endlinechar (\r) terminates the line and the rest gets discarded.
However, a \n by default has category code 12 (other) and is turned into a
space and successive spaces are (normally) ignored, which is why we get the
third and fourth line separated by a space.

Things get real hairy when we do the following:

\startluacode
tex.print("\\bgroup")
tex.print("\\obeylines")
tex.print("line 1\r line 2")
tex.print("line 3\n line 4")
tex.print("\\egroup")
\stopluacode

Now we get this (the tex.print function appends an endline character itself):

line 1
line 2
line 3 line 4

By making the endline character active and equivalent to \par TgX nicely scans
on and we get the second line as well. Now, if you're still with us, you're ready
for the next section.

15.3 Plain TgX

In the TEX engine, some characters already have a special meaning. This is
needed because otherwise we cannot use the macro language to set up the
format. This is hard-coded so the next code is not really used.

\catcode "\™"@
\catcode "\""™M =

% ascii null is ignored

9
5 % ascii return is end-line

144 Characters with special meanings

\catcode '\\ = 0
\catcode "\% 14
\catcode "\ 10
\catcode "\""? =15

o

backslash is TeX escape character
percent sign is comment character
ascii space is blank space

ascii delete is invalid

0P

1}
o°

o°

There is no real reason for setting up the null and delete character but maybe
in those days the input could contain them. The regular upper- and lowercase
characters are initialized to be letters with catcode 11. All other characters get
category code 12 (other).

The plain TgX format starts with setting up some characters that get a special
meaning.

\catcode "\{ =
\catcode “\} =
\catcode '\$ =
\catcode "\& =
\catcode \# =
\catcode "\~ =

o®

left brace is begin-group character
right brace is end-group character
dollar sign is math shift

ampersand is alignment tab

% hash mark is macro parameter character
\catcode \""K=7 % circumflex and uparrow
are for superscripts
underline and downarrow
are for subscripts
\catcode "\""I = 10 % ascii tab is a blank space

\catcode "\~ 13 % tilde is active

o® o°

N o B~ WN -
o°

o®

\catcode "\ = 8 \catcode \""A=8

o

o

The fact that this happens in the format file indicates that it is not by design
that for instance curly braces are used for grouping, or the hash for indicating
arguments. Even math could have been set up differently. Nevertheless, all
macro packages have adopted these conventions so they could as well have
been hard-coded presets.

Keep in mind that nothing prevents us to define more characters this way, so
we could make square brackets into group characters as well. I wonder how
many people have used the two additional special characters that can be used
for super- and subscripts. The comment indicates that it is meant for a special
keyboard.

One way to make sure that a macro will not be overloaded is to use characters
in it's name that are letters when defining the macro but make sure that they

are others when the user inputs text.

\catcode '@ = 11

Characters with special meanings 145

Again, the fact that plain TgX uses the commercial at sign has set a standard.
After all, at that time this symbol was not as popular as it is nowadays.

Further on in the format some more catcode magic happens. For instance this:
\catcode "\""L = 13 \outer\def”*"L{\par} % ascii form-feed is "\outer\par"
So, in your input a formfeed is equivalent to an empty line which makes sense,
although later we will see that in ConTXTt we do it differently. As the tilde was
already active it also gets defined:

\def~{\penaltyl0000\ } % tie

Again, this convention is adopted and therefore a sort of standard. Nowadays
we have special UNicoDE characters for this, but as they don’'t have a visualiza-
tion editing is somewhat cumbersome.

The change in catcode of the newline character ~"M is done locally, for instance
in \obeylines. Keep in mind that this is the character that TgX appends to the

end of an input line. The space is made active when spaces are to be obeyed.

A few very special cases are the following.

\mathcode "\""Z = "8000 % \ne
\mathcode "\ = "8000 % \space
\mathcode “\' = "8000 % "\prime
\mathcode "\ = "8000 % \

This flags those characters as being special in mathmode. Normally when you
do something like this:

\def\test#1{$#1$} \test{x 2} \test{x''}

The catcodes that are set when passing the argument to \test are frozen when
they end up in the body of the macro. This means that when ' is other it will
be other when the math list is built. However, in math mode, plain TgX wants
to turn that character into a prime and even in a double one when there are
two in a row. The special value "8000 tells the math machinery that when it
has an active meaning, that one will be triggered. And indeed, the plain format
defined these active characters, but in a special way, sort of:

{ \catcode'\' = 13 \gdef'{....} }

So, when active it has a meaning, and it happens to be only treated as active

146 Characters with special meanings

when in math mode.

Quite some other math codes are set as well, like:

\mathcode *"@ = "2201 % \cdot
\mathcode \""A = "3223 % \downarrow
\mathcode \""B = "010B % \alpha
\mathcode \""C = "010C % \beta

In Appendix C of The TigXbook Don Knuth explains the rationale behind this
choice: he had a keyboard that has these shortcuts. As a consequence, one
of the math font encodings also has that layout. It must have been a pretty
classified keyboard as I could not find a picture on the internet. One can
probably assemble such a keyboard from one of those keyboard that come with
no imprint. Anyhow, Don explicitly says “Of course, designers of TgX macro
packages that are intended to be widely used should stick to the standard
ascIl characters.” so that is what we do in the next sections.

15.4 How about CONTEXT

In CoNTEXT we've always used several catcode regimes and switching between
them was a massive operation. Think of a different regime when defining
macros, inputting text, typesetting verbatim, processing xmL, etc. When LuaTgX
introduced catcode tables, the existing mechanisms were rewritten to take ad-
vantage of this. This is the standard table for input as of December 2010.

\startcatcodetable \ctxcatcodes
\catcode \tabasciicode \spacecatcode
\catcode \endoflineasciicode \endoflinecatcode
\catcode \formfeedasciicode \endoflinecatcode
\catcode \spaceasciicode \spacecatcode
\catcode \endoffileasciicode \ignorecatcode
\catcode \circumflexasciicode \superscriptcatcode
\catcode \underscoreasciicode \subscriptcatcode
\catcode \ampersandasciicode \alignmentcatcode
\catcode \backslashasciicode \escapecatcode
\catcode \leftbraceasciicode \begingroupcatcode
\catcode \rightbraceasciicode \endgroupcatcode

\catcode \dollarasciicode \mathshiftcatcode
\catcode \hashasciicode \parametercatcode
\catcode \commentasciicode \commentcatcode
\catcode \tildeasciicode \activecatcode
\catcode \barasciicode \activecatcode

Characters with special meanings 147

\stopcatcodetable

Because the meaning of active characters can differ per table there is a related
mechanism for switching those meanings. A careful reader might notice that
the formfeed character is just a newline. If present at all, it often sits on its own
line, so effectively it then behaves as in plain TX: triggering a new paragraph.
Otherwise it becomes just a space in the running text.

In addition to the active tilde we also have an active bar. This is actually one of
the oldest features: we use bars for signaling special breakpoints, something
that is really needed in Dutch (education), where we have many compound
words. Just to show a few applications:

firstpart||secondpart this|(|orthat) one|+|two|+|three

In MKIV we have another way of dealing with this. There you can enable a
special parser that deals with it at another level, the node list.

\setbreakpoints[compound]

When TgXies discuss catcodes some can get quite upset, probably because they
spend some time fighting their side effects. Personally I like the concept. They
can be a pain to deal with but also can be fun. For instance, support of xML in
CoNTgXt MKII was made possible by using active < and &.

When dealing with all kind of inputs the fact that characters have special mean-
ings can get in the way. One can argue that once a few have a special meaning,
it does not matter that some others have. Most complaints from users concern

$, &and . When for symmetry we add * it is clear that these characters relate

to math.

Getting away from the $ can only happen when users are willing to use for
instance \m{x} instead of x. The & is an easy one because in CoNTEXT we
have always discouraged its use in tables and math alignments. Using (short)
commands is a bit more keying but also provides more control. That leaves the
_and ~ and there is a nice solution for this: the special math tagging discussed
in the previous section.

For quite a while CoNTEXT provides two commands that makes it possible to
use & _and ~ as characters with only a special meaning inside math mode.

The command

\nonknuthmode

148 Characters with special meanings

turns on this feature. The counterpart of this command is
\donknuthmode

One step further goes the command:

\asciimode

This only leave the backslash and curly braces a special meaning.

\startcatcodetable \txtcatcodes
\catcode \tabasciicode \spacecatcode
\catcode \endoflineasciicode \endoflinecatcode
\catcode \formfeedasciicode \endoflinecatcode
\catcode \spaceasciicode \spacecatcode
\catcode \endoffileasciicode \ignorecatcode
\catcode \backslashasciicode \escapecatcode
\catcode \leftbraceasciicode \begingroupcatcode
\catcode \rightbraceasciicode\endgroupcatcode

\stopcatcodetable

So, even the percentage character being a comment starter is no longer there.
At this time it's still being discussed where we draw the line. For instance,
using the following setup renders puts TgX out of action, and we happily use
it deep down in CoNTgXrT to deal with verbatim.

\startcatcodetable \vrbcatcodes
\catcode \tabasciicode \othercatcode
\catcode \endoflineasciicode \othercatcode
\catcode \formfeedasciicode \othercatcode

\catcode \spaceasciicode \othercatcode
\catcode \endoffileasciicode \othercatcode
\stopcatcodetable

15.5 Where are we heading?

When defining macros, in CoNTgXTt we not only use the @ to provide some pro-
tection against overloading, but also the ? and !. There is of course some
freedom in how to use them but there are a few rules, like:

\c!width % interface neutral key
\v!yes % interface neutral value

Characters with special meanings 149

\s!default

o

system constant

\e!start % interface specific command name snippet
\!!depth % width as keyword to primitive
\!lstringa % scratch macro

\?7ab % namespace

\@@abwidth % namespace-key combination

There are some more but this demonstrates the principle. When defining
macros that use these, you need to push and pop the current catcode regime

\pushcatcodes
\catcodetable \prtcatcodes

\popcatcodes

or more convenient:

\unprotect

\protect

Recently we introduced named parameters in ConTXrt and files that are coded
that way are tagged as MkVI. Because we nowadays are less concerned about
performance, some of the commands that define the user interface have been
rewritten. At the cost of a bit more runtime we move towards a somewhat
cleaner inheritance model that uses less memory. As a side effect module
writers can define the interface to functionality with a few commands; think
of defining instances with inheritance, setting up instances, accessing para-
meters etc. It sounds more impressive than it is in practice but the reason

for mentioning it here is that this opportunity is also used to provide module
writers an additional protected character: _

\def\do this or that#variable#index%
{$#variable {#index}$}

\def\thisorthat#variable#index%
{(\do_this or that{#variable}{#index})}

Of course in the user macros we don’'t use the _if only because we want that
character to show up as it is meant.

\startcatcodetable \prtcatcodes
\catcode \tabasciicode \spacecatcode

150 Characters with special meanings

\catcode \endoflineasciicode \endoflinecatcode
\catcode \formfeedasciicode \endoflinecatcode
\catcode \spaceasciicode \spacecatcode
\catcode \endoffileasciicode \ignorecatcode
\catcode \circumflexasciicode \superscriptcatcode
\catcode \underscoreasciicode \lettercatcode
\catcode \ampersandasciicode \alignmentcatcode
\catcode \backslashasciicode \escapecatcode
\catcode \leftbraceasciicode \begingroupcatcode
\catcode \rightbraceasciicode \endgroupcatcode
\catcode \dollarasciicode \mathshiftcatcode
\catcode \hashasciicode \parametercatcode
\catcode \commentasciicode \commentcatcode
\catcode "\@ \lettercatcode
\catcode "\! \lettercatcode
\catcode "\? \lettercatcode
\catcode \tildeasciicode \activecatcode
\catcode \barasciicode \activecatcode

\stopcatcodetable

This table is currently used when defining core macros and modules. A rather
special case is the circumflex. It still has a superscript related catcode, and
this is only because the circumfilex has an additional special meaning

Instead of the symbolic names in the previous blob of code we could have indi-
cated characters numbers as follows:

\catcode "\""I \spacecatcode

However, if at some point we decide to treat the circumflex similar as the under-
score, i.e. give it a letter catcode, then we should not use this double circumflex

method. In fact, the code base does not do that any longer, so we can decide on

that any moment. If for some reason the double circumflex method is needed,
for instance when defining macros like \obeylines, one can do this:

\bgroup
\permitcircumflexescape
\catcode \endoflineasciicode \activecatcode
\gdef\obeylines%
{\catcode\endoflineasciicode\activecatcode%
\def~"M{\par}}
\egroup

Characters with special meanings 151

However, in the case of a newline one can also do this:

\bgroup
\catcode \endoflineasciicode \activecatcode
\gdef\obeylines%
{\catcode\endoflineasciicode\activecatcode%
\def
{\par}}
\egroup

Or just:
\def\obeylines{\defineactivecharacter 13 {\par}}

In CoNTgXt we have the following variant, which is faster than the previous
one.

\def\obeylines
{\catcode\endoflineasciicode\activecatcode
\expandafter\deflactiveendoflinecode{\obeyedline}}

So there are not circumflexes used at all. Also, we only need to change the
meaning of \obeyedline to give this macro another effect.

All this means that we are upgrading catcode tables, we also consider making
\nonknuthmode the default, i.e. move the initialization to the catcode vectors.
Interesting is that we could have done that long ago, as the mentioned "8000
trickery has proven to be quite robust. In fact, in math mode we're still pretty
much in knuth mode anyway.

There is one pitfall. Take this:

\def\test{$\something 2$} % \something
\def\test{$\something x$} % \something x

When we are in unprotected mode, the underscore is part of the macro name,
and will not trigger a subscript. The solution is simple:

\def\test{$\something 2%}
\def\test{$\something x$}

In the rather large ConTiEXT code base there were only a few spots where we had
to add a space. When moving on to MkIV we have the freedom to introduce such

152 Characters with special meanings

changes, although we don’t want to break compatibility too much and only for
the good. We expect this all to settle down in 2011. No matter what we decide
upon, some characters will always have a special meaning. So in fact we always
stay in some sort of donknuthmode, which is what TgX is all about.

Characters with special meanings 153

154 Characters with special meanings

20

16 Weird examples

16.1 Introduction

In this chapter I will collect a couple of weird examples.

16.2 Inter-character spacing

There was a discussion on the LUATEX (dev) list about inter character spacing
and ligatures. The discussion involved a mechanism inherited from PDFIEX
but in ConNTEXT we don’t use that at all. Actually, support for inter character
spacing was added in an early stage of MKIV development as an alternative for
the MKII variant, which used parsing at the TgX end. Personally I never use
this spacing, unless a design in a project demands it.

In the MKIV method we split ligatures when its components are known. This
works quite well. It's anyway a good idea to disable ligatures, so it's more a
fallback. Actually we should create components for hard coded characters like
2 but as no one ever complained I leave that for a later moment.

As we already had the mechanisms in place, support for selective spacing of
ligatures was a rather trivial extension. If there is ever a real need for it, I will
provide control via the normal user interface, but for now using a few hooks
will do. The following code shows an example of an implementation.2°

local utfbyte
local getchar

utf.byte
nodes.nuts.getchar

local keep = {
[0x0132] = true, [0x0133] = true, -- IJ ij
[0x00C6] = true, [OxOO0E6] = true, -- AE ae
[0x0152] = true, [0x0153] = true, -- OE oe
}

function typesetters.kerns.keepligature(n)
return keep[getchar(n)]
end

local together = {

The examples have been adapted to the latest CoNTEXT where we use \getchar (n) instead of
n.char.

Weird examples 155

[utfbyte("c")]
[utfbyte("i")]
[utfbyte("I")]

= { [utfbyte("k")] = true },
= { [utfbyte("j")] = true },
= { [utfbyte("J")] = true },

function typesetters.kerns.keeptogether(nl,n2)
local k = together[getchar(nl)]
return k and k[getchar(n2)]

end

The following also works:

local lpegmatch
local fontdata

local getcha
local getfon

local keep =

r
t

lpeg.

+ + + + +

lpeg.
lpeg.
lpeg.
lpeg.
lpeg.

lpeg.match
fonts.identifiers
nodes.nuts.getchar
nodes.nuts.getfont

-- start of name
P("i_j")

P("I J")
P("aeligature")
P("AEligature")
P("oeligature")
P("OEligature")

function typesetters.kerns.keepligature(n)
local d = fontdata[getfont(n)].descriptions

local c
local n

d and d[getchar(n)]
c and c.name

return n and lpegmatch(keep,n)

end

A more generic solution would be to use the tounicode information, but it
would be overkill as we're dealing with a rather predictable set of characters
that have gotten UnicoDpE slots assigned. When using basemode most fonts

will work anyway.

So, is this really worth the effort? Take a look at the following example.

\definecharacterkerning [KernMe] [factor=0.25]

\start

\setcharacterkerning[KernMe]

156 Weird examples

\definedfont[Serif*default]

Ach kijk effe, \ae sop draagt een knickerbocker! \par

\definedfont[Serif*smallcaps]

Ach kijk effe, \ae sop draagt een knickerbocker! \par
\stop

Typeset this (Dutch text) looks like:

Ach kijk effe, eesop draagt een knickerbocker!

ACH KIJK EFFE, £ESOP DRAAGT EEN KNICKERBOCKER!

You might wonder why I decided to look into it. Right at the moment when it
was discussed, I was implementing a style that needed the Calibri font that
comes with MS Winpows, and I visited the FontShop website to have a look at

the font. To my surprise it had quite some ligatures, way more than one would
expect.

Weird examples 157

C cchct¢tdd o ee é é
e e e é e f fbffbff thffh fi
fii i i i fifififjhhfhff
i ffi fi th i ffj fh §§ § ffj fk ffk
flfl frlififtfifftg g g g
g gdggghniiiil T
i TV iy T kk
' P mnnAannhnooo
0 6006@pbqgrrrs:s
SSsstBR [ttt ¢ttt
ntoototgngottftd
thtithththttitgthu u G G

Figure 16.1 Some of the ligatures in Calibri Regular. Just wonder what in-
tercharacter spacing will do here.

158 Weird examples

17 Glocal assignments

Here is a nice puzzle. Say that you do this:
\def\test{local} \test
What will get typeset? Right, you'll get local. Now take this:

\bgroup
\def \test {local}[\test]
\xdef\test{global}[\test]
\def \test {local}[\test]

\egroup
[\test]

Will you get:
[Local] [local] [local] [global]
or will it be:
[Local] [global] [local] [global]

Without knowing TigX, there are good reasons for getting either of them: is a
global assignment global only i.e. does it reach over the group(s) or is it global
and local at the same time? The answer is that the global definitions also
happens to be a local one, so the second line is what we get.

Something similar happens with registers, like counters:

\newcount\democount
\bgroup
\democount 1[\the\democount]
\global\democount 2[\the\democount]
\democount 1[\the\democount]
\egroup
[\the\democount]

We get: [1] [2] [1] [2], so this is consistent with macros. But how about
boxes?

\bgroup
\setbox0\hbox {local}[\copy0:\the\wd0]

Glocal assignments 159

\global\setbox®\hbox{global}[\copy0:\the\wd0]
\setbox0\hbox {local}[\copy0:\the\wdO]

\egroup
[\copy0O:\the\wd0]

This gives:

[Local:32.51053pt]
[global:39.01263pt]
[local:32.51053pt]
[global:39.01263pt]

Again, this is consistent, so let's do some manipulation:

\bgroup
\setbox0\hbox{local} \wd0=6em [\copyO:\the\wdO]
\global\setbox0\hbox{global} \global\wdO=5em [\copyO:\the\wdO]
\setbox@\hbox{local} \wdO=6em [\copy0O:\the\wdO]
\egroup
[\copyO:\the\wdO]
[local 164.79956pt]
[global :53.99963pt]
[lLocal 164.79956pt]

[global :53.99963pt]
Right, no surprise here, but ...

\bgroup
\setbox0\hbox{local} \wd0=6em [\copyO@:\the\wdO]
\global\setbox0\hbox{global} \wd0@=5em [\copy0O:\the\wdO]
\setbox@\hbox{local} \wd0=6em [\copyO:\the\wdO]

\egroup
[\copyO:\the\wdO]

See the difference? There is none. The second width assignment is applied to
the global box.

[local 164.79956pt]
[global :53.99963pt]
[local 164.79956pt]

[global :53.99963pt]

160 Glocal assignments

So how about this then:

\bgroup
\setbox@\hbox{local} \wd0=6em [\copy0O:\the\wdO]
\global\setbox0\hbox{global} [\copyO:\the\wdO]
\setbox@\hbox{local} \wd0=6em [\copyO:\the\wdO]

\egroup
[\copyO:\the\wdO]

Is this what you expect?

[local 164.79956pt]
[global:39.01263pt]
[Local 164.79956pt]

[global:39.01263pt]

So, in the case of boxes, an assignment to a box dimension is applied to the last
instance of the register, and the global nature is kind of remembered. Inside a
group, registers that are accessed are pushed on a stack and the assignments
are applied to the one on the stack and when no local box is assigned, the
one at the outer level gets the treatment. You can also say that a global box is
unreachable once a local instance is used.?!

\setbox0\hbox{outer} [\copy0O:\the\wd0]

\bgroup
\wdO=6em [\copy0@:\the\wdO]
\egroup
[\copyO:\the\wdO]
This gives:

[outer:32.51053pt]
[outer 164.79956pt]
[outer :64.79956pt]

It works as expected when we use local boxes after such an assignment:

\setbox0\hbox{outer} [\copy0:\the\wdo]
\bgroup

\wdO=6em [\copy0Q:\the\wdO]

\setbox0\hbox{inner (local)} [\copyO:\the\wdO]

21 The code that implements \global \setbox actually removes all intermediate boxes.

Glocal assignments 161

\egroup
[\copyO:\the\wdO]

This gives:

[outer:32.51053pt]

[outer 164.79956pt]
[inner (local):84.52737pt]
[outer 164.79956pt]

Interestingly in practice this is natural enough not to get noticed. Also, as the
TXbook explicitly mentions that one should not mix local and global usage,
not many users will do that. For instance the scratch registers O, 2, 4, 6 and
8 are often used locally while 1, 3, 5, 7 and 9 are supposedly used global. The
argument for doing this is that it does not lead to unwanted stack build-up,
but the last examples given here provide another good reason. Actually, global
assignments happen seldom in macro packages, at least compared to local
ones.

In LuaTX we can also access boxes at the Lua end. We can for instance change
the width as follows:

\bgroup
\setbox0\hbox{local}
\ctxlua{tex.box[0].width
\global\setbox0\hbox{global}
\ctxlua{tex.box[0].width
\setbox0@\hbox{local}
\ctxlua{tex.box[0].width

tex.sp("6em")} [\copyO:\the\wdO]

tex.sp("5em")} [\copyO:\the\wdO]

tex.sp("6em")} [\copyO:\the\wdO]

\egroup
[\copyO:\the\wdO]

This is consistent with the TgX end:

[local 164.79956pt]
[global :53.99963pt]
[Local 164.79956pt]

[global :53.99963pt]
This is also true for:

\bgroup
\setbox0\hbox{local}

162 Glocal assignments

22

\ctxlua{tex.box[0].width = tex.sp("6em")} [\copy0:\the\wd0]

\global\setbox0\hbox{global} [\copy@:\the\wdO]
\setbox0\hbox{local}
\ctxlua{tex.box[0].width = tex.sp("6em")} [\copy0:\the\wdO]
\egroup
[\copyO:\the\wdO]
Which gives:
[local 164.79956pt]
[global:39.01263pt]
[local 164.79956pt]

[global:39.01263pt]

The fact that a \global prefix is not needed for a global assignment at the TgX
end means that we don’t need a special function at the Lua end for assigning
the width of a box. You won’t miss it.

There is one catch when coding at the TEX end. Imagine this:

\setbox0\hbox{local} [\copyO:\the\wdO]
\bgroup
\wdO=6em [\copyO:\the\wdO]
\egroup
[\copyO:\the\wdO]

In sync with what we told you will get:
[local:32.51053pt]

[lLocal 164.79956pt]

[local 164.79956pt]

However, this does not look that intuitive as the following:

Here the global is redundant but it looks quite okay to put it there if only to
avoid confusion.??

I finally decided to remove some of the \global prefixes in my older code, but I must admit
that I sometimes felt reluctant when doing it, so I kept a few.

Glocal assignments 163

164 Glocal assignments

18 Handling math: A retrospective

This is TucBoar article .. reference needed.

When you start using TgX, you cannot help but notice that math plays an
important role in this system. As soon as you dive into the code you will see
that there is a concept of families that is closely related to math typesetting. A
family is a set of three sizes: text, script and scriptscript.

¢ d
a” = -

The smaller sizes are used in superscripts and subscripts and in more complex
formulas where information is put on top of each other.

It is no secret that the latest math font technology is not driven by the TgX com-
munity but by Microsoft. They have taken a good look at TgX and extended the

OpENTYPE font model with the information that is needed to do things similar

to TgX and beyond. It is a firm proof of TigX’s abilities that after some 30 years

it is still seen as the benchmark for math typesetting. One can only speculate

what Don Knuth would have come up with if today’s desktop hardware and

printing technology had been available in those days.

As a reference implementation of a font Microsoft provides Cambria Math. In
the specification the three sizes are there too: a font can provide specifically
designed script and scriptscript variants for text glyphs where that is relevant.
Control is exercised with the ssty feature.

Another inheritance from TgX and its fonts is the fact that larger symbols can
be made out of snippets and these snippets are available as glyphs in the font,
so no special additional (extension) fonts are needed to get for instance really
large parentheses. The information of when to move up one step in size (given
that there is a larger shape available) or when and how to construct larger
symbols out of snippets is there as well. Placement of accents is made easy by
information in the font and there are a whole lot of parameters that control the
typesetting process. Of course you still need machinery comparable to TgX's
math subsystem but Microsoft Word has such capabilities.

I'm not going to discuss the nasty details of providing math support in TgX, but
rather pay some attention to an (at least for me) interesting side effect of TgX's
math machinery. There are excellent articles by Bogustaw Jackowski and Ulrik
Vieth about how TgX constructs math and of course Knuth’s publications are
the ultimate source of information as well.

Handling math: A retrospective 165

Even if you only glance at the implementation of traditional TgX font support,
the previously mentioned families are quite evident. You can have 16 of them
but 4 already have a special role: the upright roman font, math italic, math
symbol and math extension. These give us access to some 1000 glyphs in
theory, but when TgX showed up it was mostly a 7-bit engine and input of
text was often also 7-bit based, so in practice many fewer shapes are available,
and subtracting the snippets that make up the large symbols brings down the
number again.

Now, say that in a formula you want to have a bold character. This character
is definitely not in the 4 mentioned families. Instead you enable another one,
one that is linked to a bold font. And, of course there is also a family for bold
italic, slanted, bold slanted, monospaced, maybe smallcaps, sans serif, etc. To
complicate things even more, there are quite a few symbols that are not covered
in the foursome so we need another 2 or 3 families just for those. And yes, bold
math symbols will demand even more families.

a+b+c=d+e+/[f

Try to imagine what this means for implementing a font system. When (in for
instance CoNTXT) you choose a specific body font at a certain size, you not only
switch the regular text fonts, you also initialize math. When dealing with text
and a font switch there, it is no big deal to delay font loading and initialization
till you really need the font. But for math it is different. In order to set up the
math subsystem, the families need to be known and set up and as each one
can have three members you can imagine that you easily initialize some 30 to
40 fonts. And, when you use several math setups in a document, switching
between them involves at least some re-initialization of those families.

When Taco Hoekwater and I were discussing LuaATgX and especially what was
needed for math, it was sort of natural to extend the number of families to 256.
After all, years of traditional usage had demonstrated that it was pretty hard to
come up with math font support where you could freely mix a whole regular and
a whole bold set of characters simply because you ran out of families. This is
a side effect of math processing happening in several passes: you can change
a family definition within a formula, but as TgX remembers only the family
number, a later definition overloads a previous one. The previous example in
a traditional TigX approach can result in:

a + \fam7 b + \fam8 c = \fam9 d + \faml0 e + \famll f
Here the a comes from the family that reflects math italic (most likely family 1)

and + and = can come from whatever family is told to provide them (this is
driven by their math code properties). As family numbers are stored in the

166 Handling math: A retrospective

identification pass, and in the typesetting pass resolve to real fonts you can
imagine that overloading a family in the middle of a definition is not an option:
it's the number that gets stored and not what it is bound to. As it is unlikely
that we actually use more than 16 families we could have come up with a pool
approach where families are initialized on demand but that does not work too
well with grouping (or at least it complicates matters).

So, when I started thinking of rewriting the math font support for CoNTgXT
MKIV, I still had this nicely increased upper limit in mind, if only because I was
still thinking of support for the traditional TX fonts. However, I soon realized
that it made no sense at all to stick to that approach: OpeNTYPE math was on
its way and in the meantime we had started the math font project. But given
that this would easily take some five years to finish, an intermediate solution
was needed. As we can make virtual fonts in LuaTiX, I decided to go that route
and for several years already it has worked quite well. For the moment the
traditional TgX math fonts (Computer Modern, px, tx, Lucida, etc) are virtual-
ized into a pseudo-OpPENTYPE font that follows the UNicopE math standard. So
instead of needing more families, in CoNTEXT we could do with less. In fact,
we can do with only two: one for regular and one for bold, although, thinking
of it, there is nothing that prevents us from mixing different font designs (or
preferences) in one formula but even then a mere four families would still be
fine.

To summarize this, in ConTgXT MKIV the previous example now becomes:
U+1D44E + U+1D41B + 0x1D484 = U+1D68D + U+1D5BE + U+1D4BB

For a long time I have been puzzled by the fact that one needs so many fonts
for a traditional setup. It was only after implementing the ConTiXT MKIV math
subsystem that I realized that all of this was only needed in order to support
alphabets, i.e. just a small subset of a font. In UnicopE we have quite a few
math alphabets and in CoNTgXT we have ways to map a regular keyed-in (say) ‘a’
onto a bold or monospaced one. When writing that code I hadn’t even linked the
Unicobpk math alphabets to the family approach for traditional TgX. Not being a
mathematician myself I had no real concept of systematic usage of alternative
alphabets (apart from the occasional different shape for an occasional physics
entity).

Just to give an idea of what UnicoDE defines: there are alphabets in regular (up-
right), bold, italic, bold italic, script, bold script, fraktur, bold fraktur, double-
struck, sans-serif, sans-serif bold, sans-serif italic, sans-serif bold italic and
monospace. These are regular alphabets with upper- and lowercase characters
complemented by digits and occasionally Greek.

Handling math: A retrospective 167

It was a few years later (somewhere near the end of 2010) that I realized that a
lot of the complications in (and load on) a traditional font system were simply
due to the fact that in order to get one bold character, a whole font had to be
loaded in order for families to express themselves. And that in order to have
several fonts being rendered, one needed lots of initialization for just a few cases.
Instead of wasting one font and family for an alphabet, one could as well have
combined 9 (upper and lowercase) alphabets into one font and use an offset to
access them (in practice we have to handle the digits too). Of course that would
have meant extending the TEX math machinery with some offset or alternative
to some extensive mathcode juggling but that also has some overhead.

If you look at the plain TigX definitions for the family related matters, you can
learn a few things. First of all, there are the regular four families defined:

\textfontO=\tenrm \scriptfontO=\sevenrm \scriptscriptfontO=\fiverm
\textfontl=\teni \scriptfontl=\seveni \scriptscriptfontl=\fivei
\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy
\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex

Each family has three members. There are some related definitions as well:

\def\rm {\famO\tenrm}
\def\mit {\faml}
\def\oldstyle{\faml\teni}
\def\cal {\fam2}

So, with \ rm you not only switch to a family (in math mode) but you also enable

a font. The same is true for \oldstyle and this actually brings us to another

interesting side effect. The fact that oldstyle numerals come from a math font

has implications for the way this rendering is supported in macro packages.
As naturally all development started when TgX came around, package design

decisions were driven by the basic fact that there was only one math font avail-
able. And, as a consequence most users used the Computer Modern fonts and

therefore there was never a real problem in getting those oldstyle characters in

your document.

However, oldstyle figures are a property of a font design (like table digits) and
as such not specially related to math. And, why should one tag each number
then? Of course it's good practice to tag extensively (and tagging makes switch-
ing fonts easy) but to tag each number is somewhat over the top. When more
fonts (usable in TEX) became available it became more natural to use a proper
oldstyle font for text and the \oldstyle more definitely ended up as a math
command. This was not always easy to understand for users who primarily
used TgX for anything but math.

168 Handling math: A retrospective

23

Another interesting aspect is that with OPENTYPE fonts oldstyle figures are again
an optional feature, but now at a different level. There are a few more such
traditional issues: bullets often come from a math font as well (which works
out ok as they have nice, not so tiny bullets). But the same is true for triangles,
squares, small circles and other symbols. And, to make things worse, some
come from the regular TigX math fonts, and others from additional ones, like
the ams symbols. Again, OPENTYPE and UNicoDE will change this as now these
symbols are quite likely to be found in fonts as they have a larger repertoire of
shapes.

From the perspective of going from MKkII to MkIV it boils down to changing
old mechanisms that need to handle all this (dependent on the availability of
fonts) to cleaner setups. Of course, as fonts are never completely consistent,
or complete for that matter, and features can be implemented incorrectly or
incompletely we still end up with issues, but (at least in ConTEXT) dealing with
that has been moved to runtime manipulation of the fonts themselves (as part
of the so-called font goodies).

Back to the plain definitions, we now arrive at some new families:

\newfam\itfam \def\it{\fam\itfam\tenit}
\newfam\slfam \def\sl{\fam\slfam\tensl}
\newfam\bffam \def\bf{\fam\bffam\tenbf}
\newfam\ttfam \def\tt{\fam\ttfam\tentt}

The plain TgX format was never meant as a generic solution but instead was an
example of a macro set and serves as a basis for styles used by Don Knuth for
his books. Nevertheless, in spite of the fact that TigX was made to be extended,
pretty soon it became frozen and the macros and font definitions that came
with it became the benchmark. This might be the reason why UNicODE now
has a monospaced alphabet. Once you've added monospaced you might as
well add more alphabets as for sure in some countries they have their own
preferences.?3

As with \rm, the related commands are meant to be used in text as well. More
interesting is to see what follows now:

\textfont \itfam=\tenit
\textfont \slfam=\tensl

At the Dante 2011 meeting we had interesting discussions during dinner about the advantages
of using Stitterlinschrift for vector algebra and the possibilities for providing it in the upcoming
TiX Gyre math fonts.

Handling math: A retrospective 169

\textfont \bffam=\tenbf
\scriptfont \bffam=\sevenbf
\scriptscriptfont\bffam=\fivebf

\textfont \ttfam=\tentt

Only the bold definition has all members. This means that (regular) italic,
slanted, and monospaced are not actually that much math at all. You will
probably only see them in text inside a math formula. From this you can de-
duce that contrary to what I said before, these variants were not really meant
for alphabets, but for text in which case we need complete fonts. So why do I
still conclude that we don’t need all these families? In practice text inside math
is not always done this way but with a special set of text commands. This is
a consequence of the fact that when we add text, we want to be able to do so
in each language with even language-specific properties supported. And, al-
though a family switch like the above might do well for English, as soon as you
want Polish (extended Latin), Cyrillic or Greek you definitely need more than
a family switch, if only because encodings come into play. In that respect it
is interesting that we do have a family for monospaced, but that \Im and \Re
have symbolic names, although a more extensive setup can have a blackboard
family switch.

By the way, the fact that TgX came with italic alongside slanted also has some
implications. Normally a font design has either italic or something slanted
(then called oblique). But, Computer Modern came with both, which is no
surprise as there is a metadesign behind it. And therefore macro packages
provide ways to deal with those variants alongside. I wonder what would have
happened if this had not been the case. Nowadays there is always this regular,
italic (or oblique), bold and bold italic set to deal with, and the whole set can
become lighter or bolder.

In CoNTgXt MKII, however, the set is larger as we also have slanted and bold
slanted and even smallcaps, so most definition sets have 7 definitions instead
of 4. By the way, smallcaps is also special. if Computer Modern had had small-
caps for all variants, support for them in ConTgXtT undoubtedly would have
been kept out of the mentioned 7 but always been a new typeface definition (i.e.
another fontclass for insiders). So, when something would have to be small-
caps, one would simply switch the whole lot to smallcaps (bold smallcaps, etc.).
Of course this is what normally happens, at least in my setups, but neverthe-
less one can still find traces of this original Computer Modern-driven approach.
And now we are at it: the whole font system still has the ability to use design
sizes and combine different ones in sets, if only because in Computer Modern
you don’t have all sizes. The above definitions use ten, seven and five, but for

170 Handling math: A retrospective

instance for an eleven point set up you need to creatively choose the proper orig-
inals and scale them to the right family size. Nowadays only a few fonts ship

with multiple design sizes, and although some can be compensated with clever

hinting it is a pity that we can apply this mechanism only to the traditional TgX

fonts.

Concerning the slanting we can remark that TgXies are so fond of this that they
even extended the TgX engines to support slanting in the core machinery (or
more precisely in the backend while the frontend then uses adapted metrics).
So, slanting is available for all fonts.

This brings me to another complication in writing a math font subsystem: bold.
During the development of ConTiXt MKII I was puzzled by the fact that user
demands with respect to bold were so inconsistent. This is again related to the
way a somewhat simple setup looks: explicitly switching to bold characters or
symbols using a \bf (alike) switch. This works quite well in most cases, but
what if you use math in a section title? Then the whole lot should be in bold
and an embedded bold symbol should be heavy (i.e. more bold than bold). As
a consequence (and due to limited availability of complete bold math fonts) in
MKII there are several bold strategies implemented.

However, in a UNICODE universe things become surprisingly easy as UNICODE
defines those symbols that have bold companions (whatever you want to call
them, mostly math alphanumerics) so a proper math font has them already.
This limited subset is often available in a font collection and font designers can
stick to that subset. So, eventually we get one regular font (with some bold
glyphs according to the UnicopE specification) and a bold companion that has
heavy variants for those regular bold shapes.

The simple fact that Unicobpk distinguishes regular and bold simplifies an im
plementation as it’s easier to take that as a starting point than users who for
all their goodwill see only their small domain of boldness.

It might sound like UnicoDE solves all our problems but this is not entirely
true. For instance, the UnicobpE principle that no character should be there
more than once has resulted in holes in the Unicobpe alphabets, especially
Greek, blackboard, fraktur and script. As exceptions were made for non-math
I see no reason why the few math characters that now put holes in an alphabet
could not have been there. As with more standards, following some principles
too strictly eventually results in all applications that follow the standard having
to implement the same ugly exceptions explicitly. As some standards aim for
longevity I wonder how many programming hours will be wasted this way.

This brings me to the conclusion that in practice 16 families are more than

Handling math: A retrospective 171

enough in a Unicope-aware TiEX engine especially when you consider that for
a specific document one can define a nice set of families, just as in plain TgX.
It's simply the fact that we want to make a macro package that does it all and
therefore has to provide all possible math demands into one mechanism that
complicates life. And the fact that UnicopE clearly demonstrates that we're
only talking about alphabets has brought (at least) CoNTgXT back to its basics:
a relatively simple, few-family approach combined with a dedicated alphabet
selection system. Of course eventually users may come up with new demands
and we might again end up with a mess. After all, it’s the fact that TgX gives
us control that makes it so much fun.

172 Handling math: A retrospective

19 Exporting math

19.1 Introduction

As CoNTgXt has an xmL export feature and because TgX is often strongly as-
sociated with math typesetting, it makes sense to take a look at coding and
exporting math. In the next sections some aspects are discussed. The exam-
ples shown are a snaphot of the possibilities around June 2011.

19.2 Encoding the math

In ConNTEXr there are several ways to input math. In the following example
we will use some bogus math with enough structure to get some interesting
results.

The most natural way to key in math is using the TgX syntax. Of course you
need to know the right commands for accessing special symbols, but if you're
familiar with a certain domain, this is not that hard.

\startformula
\frac { x \geq 2 } { y \leq 4 }
\stopformula
x>2
y<4

When you have an editor that can show more than ascn the following also
works out well.

\startformula
\frac { x =z 2} {y=41}
\stopformula

One can go a step further and use the proper math italic alphabet but there
are hardly any (monospaced) fonts out there that can visualize it.

\startformula
\frac { x =22} {y =4}

\stopformula

Anyhow, CoNTEXT is quite capable of remapping the regular alphabets onto the
real math ones, so you can stick to x and vy.

Exporting math 173

Another way to enter the same formula is by using what we call calculator math.
We came up with this format many years ago when CoNTgXt had to process
student input using a syntax similar to what the calculators they use at school
accept.

\startformula
\calcmath{(x >= 2)/(y <= 4)}
\stopformula
x>2
y<4

As CoNTgXr is used in a free and open school math project, and because some
of our projects mix MATHML into xmML encoded sources, we can also consider
using MatHML. The conceptually nicest way is to use content markup, where
the focus is on meaning and interchangability and not on rendering. However,
we can render it quite well. OpenMath, now present in MATHML 3 is also sup-
ported.

<math xmlns='http://www.w3c.org/mathml' version='2.0'>
<apply> <divide/>
<apply> <geq/> <ci> x </ci> <cn> 2 </cn> </apply>
<apply> <leq/> <ci> y </ci> <cn> 4 </cn> </apply>
</apply>
</math>

v

2
4

x
y

IA

In practice MaATHML will be coded using the presentational variant. In many
aspects this way of coding is not much different from what TgX does.

<math xmlns='http://www.w3c.org/mathml' version='2.0'>
<mfrac>
<mrow> <mi> x </mi> <mo> ≥ </mo> <mn> 2 </mn> </mrow>
<mrow> <mi> y </mi> <mo> ≤ </mo> <mn> 4 </mn> </mrow>
</mfrac>
</math>

x>2
y<4

When we enable xmL export in the backend of CoNTgXrT, all of the above variants
are converted into the following:

<m:math display="block">
<m:mrow>

174 Exporting math

<m:mfrac>
<m:mrow>
<m:mi>x</m:mi>
<m:mo>z=</m:mo>
<m:mn>2</m:mn>
</m:mrow>
<m:mrow>
<m:mi>y</m:mi>
<m:mo>=</m:mo>
<m:mn>4</m:mn>
</m:mrow>
</m:mfrac>
</m:mrow>
</m:math>

This is pretty close to what we have entered as presentation MATHML. The main
difference is that the (display or inline) mode is registered as attribute and that
entities have been resolved to utr. Of course one could use uTr directly in the
input.

19.3 Parsing the input

In TEX typesetting math happens in two stages. First the input is parsed and
converted into a so called math list. In the following case it’s a rather linear
list, but in the case of a fraction it is a tree.

\startformula
x = - 1.23
\stopformula

x=-1.23
A naive export looks as follows. The sequence becomes an mrow:

<m:math display="block">
<m:mrow>
<m:mi>x</m:mi>
<m:mo>=</m:mo>
<m:mo>-</m:mo>
<m:mn>1</m:mn>
<m:mo>.</m:mo>
<m:mn>2</m:mn>

Exporting math 175

<m:mn>3</m:mn>
</m:mrow>
</m:math>

However, we can clean this up without too much danger of getting invalid out-
put:

<m:math display="block">
<m:mrow>
<m:mi>x</m:mi>
<m:mo>=</m:mo>
<m:mo>-</m:mo>
<m:mn>1.23</m:mn>
</m:mrow>
</m:math>

This is still not optimal, as one can argue that the minus sign is part of the
number. This can be taken care of at the input end:

\startformula
x = \mn{- 1.23}
\stopformula

Now we get:

<m:math display="block">
<m:mrow>
<m:mi>x</m:mi>
<m:mo>=</m:mo>
<m:mn>-1.23</m:mn>
</m:mrow>
</m:math>

Tagging a number makes sense anyway, for instance when we use different
numbering schemes:

\startformula
x = \mn{Ox20DF} = Ox20DF

\stopformula

We get the first number nicely typeset in an upright font but the second one
becomes a mix of numbers and identifiers:

176 Exporting math

x = 0x20DF = Ox20DF
This is nicely reflected in the export:

<m:math display="block">
<m:mrow>
<m:mi>x</m:mi>
<m:mo>=</m:mo>
<m:mn>0x20DF</m:mn>
<m:mo>=</m:mo>
<m:mn>0</m:mn>
<m:mi>x</m:mi>
<m:mn>20</m:mn>
<m:mi>D</m:mi>
<m:mi>F</m:mi>
</m:mrow>
</m:math>

In a similar fashion we can use \mo and \mi although these are seldom needed,
if only because characters and symbols already carry these properties with
them.

19.4 Enhancing the math list

When the input is parsed into a math list the individual elements are called
noads. The most basic noad has pointers to a nucleus, a superscript and a
subscript and each of them can be the start of a sublist. All lists (with more
than one character) are quite similar to mrow in MaTHML. In the export we do
some flattening because otherwise we would get too many redundant mrows,
not that it hurts but it saves bytes.

\startformula
X n"2

\stopformula

This renders as:

And it gets exported as:

<m:math display="block">
<m:mrow>

Exporting math 177

24

<m:msubsup>
<m:mi>x</m:mi>
<m:mi>n</m:mi>
<m:mn>2</m:mn>
</m:msubsup>
</m:mrow>
</m:math>

As said, in the math list this looks more or less the same: we have a noad with
a nucleus pointing to a math character (x) and two additional pointers to the
sub- and superscripts.

After this math list is typeset, we will end up with horizontal and vertical lists
with glyphs, kerns, glue and other nodes. In fact we end up with what can
be considered regular references to slots in a font mixed with positioning infor-
mation. In the process the math properties gets lost. This happens between
step 3 and 4 in the next overview.

1 xmL optional alternative input

2 TX native math coding

3 noads intermediate linked list / tree

4 nodes linked list with processed (typeset) math

5a PDF page description suitable for rendering

5b xML export reflecting the final document content

In ConTgXt MKIV we intercept the math list (with noads) and apply a couple
of manipulations to it, most noticeably relocation of characters. Last in the
(currently some 10) manipulation passes over the math list comes tagging. This
only happens when the export is active or when we produce tagged pdf.2*

By tagging the recognizable math snippets we can later use those persistent
properties to reverse engineer the MATHML from the input.

19.5 Intercepting the typeset content

When a page gets shipped out, we also convert the typeset content to an in-
termediate form, ready for export later on. Version 0.22 of the exporter has
a rather verbose tracing mechanism and the simple example with sub- and
superscript is reported as follows:

Currently the export is the benchmark and the tagged ppr implementation follows, so there
can be temporary incompatibilities.

178 Exporting math

<math-8 trigger='268' index='1l'>
<mrow-20 trigger='268' index='1l'>
<msubsup-1 trigger='268"' index='1l'>
<mi-15 trigger='268"' index='1l"'>
<!-- processing glyph 2 (tag 270) -->
<!-- moving from depth 11 to 11 (mi-15) -->
<!-- staying at depth 11 (mi-15) -->
<!-- start content with length 4 -->

X
<!-- stop content -->
<!-- moving from depth 11 to 11 (mn-13) -->
</mi-15>

<mn-13 trigger='270"' index='2'>
<!-- processing kern > threshold (tag 270 => 267)
<!-- moving from depth 11 to 11 (mn-13) -->
<!-- staying at depth 11 (mn-13) -->

<!-- start content with length 1 -->

2

<!-- stop content -->

<!-- injecting spacing 9 -->

<!-- moving from depth 11 to 10 (msubsup-1) -->
</mn-13>

</msubsup-1>
<!-- processing glyph (tag 269) -->
<!-- moving from depth 9 to 10 (msubsup-1) -->
<msubsup-1 trigger='267"' index='2'>
<!-- start content with length 1 -->

<!-- stop content -->
</msubsup-1>
<!-- moving from depth 9 to 11 (mi-16) -->
<msubsup-1 trigger='269' index='3'>
<mi-16 trigger='269' index='1l'>
<!-- processing glue > threshold (tag 269 => 262) -->
<!-- moving from depth 11 to 11 (mi-16) -->
<!-- staying at depth 11 (mi-16) -->
<!-- start content with length 4 -->

n

<!-- stop content -->

<!-- injecting spacing 6 -->

<!-- moving from depth 11 to 6 (formula-8) -->
</mi-16>

</msubsup-1>

Exporting math 179

</mrow-20>
</math-8>

This is not yet what we want so some more effort is needed in order to get
proper MATHML.

19.6 Exporting the result

The report that we showed before representing the simple example with super-
and subscripts is strongly related to the visual rendering. It happens that TgX
first typesets the superscript and then deals with the subscript. Some spacing
is involved which shows up in the report between the two scripts.

In MatHML we need to swap the order of the scripts, so effectively we need:

<math-8 trigger='268"' index='1l'>
<mrow-20 trigger='268' index='1l"'>
<msubsup-1 trigger='268' index='l'>
<mi-15 trigger='268' index='l'>

X

</mi-15>

<mi-16 trigger='269' index='2'>
n

</mi-16>

<mn-13 trigger='270"' index='3'>
2

</mn-13>

</msubsup-1>
</mrow-20>
</math-8>

This swapping (and some further cleanup) is done before the final tree is written
to a file. There we get:

<m:math display="block">
<m:mrow>
<m:msubsup>
<m:mi>x</m:mi>
<m:mi>n</m:mi>
<m:mn>2</m:mn>
</m:msubsup>
</m:mrow>

180 Exporting math

</m:math>

This looks pretty close to the intermediate format. In case you wonder with
how much intermediate data we end up, the answer is: quite some. The reason
will be clear: we intercept typeset output and reconstruct the input from that,
which means that we have additional information travelling with the content.
Also, we need to take crossing pages into account and we need to reconstruct
paragraphs. There is also some overhead in making the xmL look acceptable
but that is neglectable. In terms of runtime, the overhead of an export (includ-
ing tagging) is some 10% which is not that bad, and there is some room for
optimization.

19.7 Special treatments

In content MATHML the apply tag is the cornerstone of the definition. Because

there is enough information the rendering mechanism can deduce when a func-
tion is applied and act accordingly when it comes to figuring out the right

amount of spacing. In presentation MaTHML there is no such information and

there the signal is given by putting a character with code U+2061 between the

function identifier and the argument. In TgX input all this is dealt with in the

macro that specifies a function but some ambiguity is left.

Compare the following two formulas:
\startformula

\tan = \frac { \sin } { \cos }
\stopformula

In the export this shows up as follows:

<m:math display="block">

<m:mrow>
<!-- begin function -->
<m:mi>tan</m:mi>
<!-- end function -->
<m:mo>=</m:mo>
<m:mrow>
<m:mfrac>
<m:mrow>
<!-- begin function -->

<m:mi>sin</m:mi>

Exporting math 181

<!-- end function -->

</m:mrow>

<m:mrow>
<!-- begin function -->

<m:mi>cos</m:mi>

<!-- end function -->

</m:mrow>

</m:mfrac>
</m:mrow>
</m:mrow>
</m:math>

Watch how we know that tan is a function and not a multiplication of the
variables t, a and n.

In most cases functions will get an argument, as in:
\startformula

\tan (x) = \frac { \sin (x) } { \cos (x) }
\stopformula

<m:math display="block">
<m:mrow>
<!-- begin function -->
<m:mi>tan</m:mi>
<!-- end function -->
<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>
<m:mo>=</m:mo>
<m:mrow>
<m:mfrac>
<m:mrow>
<!-- begin function -->
<m:mi>sin</m:mi>
<!-- end function -->
<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>
</m:mrow>
<m:mrow>

182 Exporting math

<!-- begin function -->
<m:mi>cos</m:mi>
<!-- end function -->
<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>
</m:mrow>
</m:mfrac>
</m:mrow>
</m:mrow>
</m:math>

As expected we now see the arguments but it is still not clear that the function
has to be applied.

\startformula
\apply \tan {(x)} = \frac {
\apply \sin {(x)}

A
\apply \cos {(x)}
}
\stopformula
tan(x) = sin(x)
cos(x)

This time we get the function application signal in the output. We could add it
automatically in some cases but for the moment we don’'t do so. Because this
trigger has no visual rendering and no width it will not be visible in an editor.
Therefore we output an entity.

<m:math display="block">
<m:mrow>
<m:mi>tan</m:mi>
<m:mo>⁡</m: mo>
<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>
<m:mo>=</m:Mmo>
<m:mrow>
<m:mfrac>
<m:mrow>
<m:mi>sin</m:mi>
<m:mo>⁡</m:mo>

Exporting math 183

<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>

</m:mrow>

<m:mrow>
<m:mi>cos</m:mi>
<m:mo>⁡</m:mo>
<m:mo>(</m:mo>
<m:mi>x</m:mi>
<m:mo>)</m:mo>

</m:mrow>

</m:mfrac>
</m:mrow>
</m:mrow>
</m:math>

In the future, we will extend the \apply macro to also deal with automatically
managed fences. Talking of those, fences are actually supported when explicitly
coded:

\startformula
\apply \tan {\left(x\right)} = \frac {
\apply \sin {\left(x\right)}

A
\apply \cos {\left(x\right)}
}
\stopformula
tan (x) = sin (x)
cos (x)

This time we get a bit more structure because delimiters in TgX can be recog-
nized easily. Of course it helps that in CoNTgXTt we already have the infrastruc-
ture in place.

<m:math display="block">
<m:mrow>
<m:mi>tan</m:mi>
<m:mo>⁡</m: mo>
<m:mrow>
<m:mfenced left="(" right=")">
<m:mi>x</m:mi>
</m:mfenced>
</m:mrow>

184 Exporting math

<m:mo>=</m:mo>
<m:mrow>
<m:mfrac>
<m:mrow>
<m:mi>sin</m:mi>
<m:mo>⁡</m:mo>
<m:mfenced left="(" right=
<m:mi>x</m:mi>
</m:mfenced>
</m:mrow>
<m:mrow>
<m:mi>cos</m:mi>
<m:mo>⁡</m:mo>
<m:mfenced left="(" right=")">
<m:mi>x</m:mi>
</m:mfenced>
</m:mrow>
</m:mfrac>
</m:mrow>
</m:mrow>
</m:math>

II>

Yet another special treatment is needed for alignments. We use the next exam-
ple to show some radicals as well.

\startformula
\startalign

\NC a”2 \EQ \sqrt{b} \NR

\NC ¢ \EQ \frac{d}{e} \NR

\NC \EQ f \NR
\stopalign
\stopformula

It helps that in CoNTEXT we use a bit of structure in math alignments. In fact,
a math alignment is just a regular alignment, with math in its cells. As with
other math, eventually we end up with boxes so we need to make sure that
enough information is passed along to reconstuct the original.

2 =h

C =

~ 0|

Exporting math 185

<m:math display="inline">
<m:mtable detail='align'>
<m:mtr>
<m:mtd>
<m:mrow>
<m:msup>
<m:mi>a</m:mi>
<m:mn>2</m:mn>
</m:msup>
</m:mrow>
</m:mtd>
<m:mtd>
<m:mrow>
<m:mo>=</m:mo>
<m:mroot>
<m:mi>b</m:mi>
</m:mroot>
</m:mrow>
</m:mtd>
</m:mtr>
<m:mtr>
<m:mtd>
<m:mrow>
<m:mi>c</m:mi>
</m:mrow>
</m:mtd>
<m:mtd>
<m:mrow>
<m:mo>=</m:mo>
<m:mfrac>
<m:mrow>
<m:mi>d</m:mi>
</m:mrow>
<m:mrow>
<m:mi>e</m:mi>
</m:mrow>
</m:mfrac>
</m:mrow>
</m:mtd>
</m:mtr>
<m:mtr>
<m:mtd>
<m:mrow>

186 Exporting math

<m:mo>=</m:mo>
<m:mi>f</m:mi>
</m:mrow>
</m:mtd>
</m:mtr>
</m:mtable>
</m:math>

Watch how the equal sign ends up in the cell. Contrary to what you might
expect, the relation symbols (currently) don’t end up in their own column. Keep
in mind that these tables look structured but that presentational MATHML does
not assume that much structure.?®

19.8 Units

Rather early in the history of CoNTgXT we had support for units and the main
reason for this was that we wanted consistent spacing. The input of the old
method looks as follows:

10 \Cubic \Meter \Per \Second

This worked in regular text as well as in math and we even have an xmL variant.
A few years ago I played with a different method and the Lua code has been
laying around for a while but never made it into the CoNTgXt core. However,
when playing with the export, I decided to pick up that thread. The verbose
variant can now be coded as:

10 \unit{cubic meter per second}

but equally valid is:

10 \unit{m2/s}

and also

\unit{10 m2/s}

is okay. So, one can use the short (often official) symbols as well as more
verbose names. In order to see what gets output we cook up some bogus units.

25 The spacing could be improved here but it’s just an example, not something real.

Exporting math 187

30 \unit{kilo pascal square meter / kelvin second}

This gets rendered as: 30 kPa-m%/K-s . The export looks as follows:
30 <unit>kPa-m²/K-:s</unit>

You can also say:

\unit{30 kilo pascal square meter / kelvin second}

and get: 30 kPa-m?* K-s . This time the export looks like this:

<quantity>
<number>30</number>
<unit>kPa-m²/K-s</unit>
</quantity>

When we use units in math, the rendering is mostly the same. So,
$30 \unit{kilo pascal square meter / kelvin second }$
Gives: 30kPa-m%K:-s , but the export now looks different:

<m:math display="inline">

<m:mrow>

<m:mn>30</m:mn>

<m:maction actiontype="unit">

<m:mrow>
<m:mi mathvariant="normal">k</m:mi>
<m:mi mathvariant="normal">P</m:mi>
<m:mi mathvariant="normal">a</m:mi>
<m:mo>-</m:mo>
<m:msup>
<m:mi mathvariant="normal">m</m:mi>
<m:mn>2</m:mn>
</m:msup>
<m:mo>/</m:mo>
<m:mi mathvariant="normal">K</m:mi>
<m:mo>-:</m:mo>
<m:mi mathvariant="normal">s</m:mi>
</m:mrow>
</m:maction>
</m:mrow>
</m:math>

188 Exporting math

Watch how we provide some extra information about it being a unit and how
the rendering is controlled as by default a renderer could turn the K and other
identifiers into math italic. Of course the subtle spacing is lost as we assume
a clever renderer that can use the information provided in the maction.

19.9 Conclusion

So far the results of the export look quite acceptable. It is to be seen to what
extent typographic detail will be added. Thanks to Unicope math we don’t need
to add style directives. Because we carry information with special spaces, we
could add these details if needed but for the moment the focus is on getting
the export robust on the one end, and extending ConNTgXt’s math support with
some additional structure.

The export shows in the previous sections was not entirely honest: we didn't
show the wrapper. Say that we have this:

\startformula
e = mc"2
\stopformula

This shows up as:
e = mc
and exports as:

<formula>
<formulacontent>
<m:math display="block">
<m:mrow>
<m:mi>e</m:mi>
<m:mo>=</m:Mmo>
<m:mi>m</m:mi>
<m:msup>
<m:mi>c</m:mi>
<m:mn>2</m:mn>
</m:msup>
</m:mrow>
</m:math>
</formulacontent>
</formula>

Exporting math 189

\placeformula
\startformula

e = mc"2
\stopformula

This becomes:
_ 2
e =mc (19.1)
and exports as:

<formula>
<formulacontent>
<m:math display="block">
<m:mrow>
<m:mi>e</m:mi>
<m:mo>=</m:mo>
<m:mi>m</m:mi>
<m:msup>
<m:mi>c</m:mi>
<m:mn>2</m:mn>
</m:msup>
</m:mrow>
</m:math>
</formulacontent>
<formulacaption>
(<formulanumber detail='formula'>1.1l</formulanumber>)
</formulacaption>
</formula>

The caption can also have a label in front of the number. The best way to deal
with this still under consideration. I leave it to the reader to wonder how we
get the caption at the same level as the content while in practice the number
is part of the formula.

Anyway, the previous pages have demonstrated that with version 0.22 of the
exporter we can already get a quite acceptable math export. Of course more
will follow.

190 Exporting math

20 E-books: Old wine in new bottles

20.1 Introduction

When Dave Walden asked me if TgX (or CoNTEXT) can generate ebooks we ex-
changed a bit of mail on the topic. Although I had promised myself never to fall
into the trap of making examples for the sake of proving something I decided
to pick up an experiment that I had been doing with a manual in progress and
look into the HTML side of that story. After all, occasionally on the ConTEXT list
similar questions are asked, like “Can ConNTgXT produce HTML?".26

20.2 Nothing new

When you look at what nowadays is presented as an ebook document, there is

not much new going on. Of course there are very advanced and interactive doc-
uments, using techniques only possible with recent hardware and programs,
but the average ebook is pretty basic. This is no surprise. When you take a

novel, apart from maybe a cover or an occasional special formatting of section

titles, the typesetting of the content is pretty straightforward. In fact, given that

formatters like TigX have been around that can do such jobs without much in-
tervention, it takes quite some effort to get that job done badly. It was a bit

shocking to notice that on one of the first e-ink devices that became available

the viewing was quite good, but the help document was just some word proces-
sor output turned into bad-looking ppr. The availability of proper hardware

does not automatically trigger proper usage.

I can come up with several reasons why a novel published as an ebook does not
look much more interesting and in many cases looks worse. First of all it has
to be produced cheaply, because there is also a printed version and because
the vendor of some devices also want to make money on it (or even lock you
into their technology or shop). Then, it has to be rendered on various devices
so the least sophisticated one sets the standard. As soon as it gets rendered,
the resolution is much worse than what can be achieved in print, although
nowadays I've seen publishers go for quick and dirty printing, especially for
reprints.

Over a decade ago, we did some experiments with touch screen computers.
They had a miserable battery life, a slow processor and not much memory, but
the resolution was the same as on the now fashionable devices. They were

26 This text appeared in the EUROTEX 2011 proceedings and TUGBoat 101. Thanks to Karl Berry
for correcting it.

E-books: Old wine in new bottles 191

quite suitable for reading but even in environments where that made sense (for
instance to replace carrying around huge manuals), such devices never took
off. Nowadays we have wireless access and usB sticks and memory cards to
move files around, which helps a lot. And getting a quality comparable to what
can be done today was no big deal, at least from the formatting point of view.

In the CoNTgXT distribution you will find several presentation styles that can
serve as bases for an ebook style. Also some of the CoNTEXT manuals come
with two versions: one for printing and one for viewing on the screen. A nice
example is the METAFUN manual (see figure 20.1) where each page has a dif-
ferent look.

Page 44 Drawing pictures

These two graphics were defined and drawn using the following commands. Later we will explain how you
can set the line width (or penshape in terms of METAPOST).

path p ; p := (Ocm,1cm)..(2cm,2cm) .. (4cm,Ocm)..(2.5cm,1cm)..cycle ;
drawarrow p withcolor .625red ;
draw p shifted (7cm,0) dashed withdots withcolor .625yellow ;

Once we have drawn one or more paths, we can store them in a picture variable. The straightforward way to
store a picture is to copy it from the current picture:

picture pic ; pic := currentpicture ;

The following command effectively clears the picture memory and allows us to start anew.

:= nullpicture ;

currentpicture

We can shift, rotate and slant the picture stored in pic as we did with paths. We can say:

draw pic rotated 45 withcolor red ;

Welcome to MetaPost

Figure 20.1 A page from the METAFUN manual.

It must be said that the (currently only black and white) devices that use elec-
tronic ink have a perceived resolution that is higher than their specifications,
due to the semi-analog way the ‘ink’ behaves. In a similar fashion clever anti-
aliasing can do wonders on Lcp screens. On the other hand they are some-
what slow and a display refresh is not that convenient. Their liquid crystal
counterparts are much faster but they can be tiresome to look at for a long
time and reading a book on it sitting in the sun is a no-go. Eventually we will
get there and I'm really looking forward to seeing the first device that will use

192 E-books: Old wine in new bottles

a high resolution electrowetting cmyk display.?’” But no matter what device is
used, formatting something for it is not the most complex task at hand.

20.3 Impact

Just as with phones and portable audio devices, the market for tablets and
ebook-only devices is evolving rapidly. While writing this, at work I have one
ebook device and one tablet. The ebook device is sort of obsolete because the
e-ink screen has deteriorated even without using it and it’s just too slow to be
used for reference manuals. The tablet is nice, but not that suitable for all
circumstances: in the sun it is unreadable and at night the backlight is rather
harsh. But, as I mentioned in the previous section, I expect this to change.

If we look at the investment, one needs good arguments to buy hardware that
is seldom used and after a few years is obsolete. Imagine that a family of four
has to buy an ebook device for each member. Add to that the cost of the books
and you quickly can end up with a larger budget than for books. Now, imagine
that you want to share a book with a friend: will you give him or her the device?
It might be that you need a few more devices then. Of course there is also some
data management needed: how many copies of a file are allowed to be made
and do we need special programs for that? And if no copy can be made, do
we end up swapping devices? It is hard to predict how the situation will be
in a few years from now, but I'm sure that not everyone can afford this rapid
upgrading and redundant device approach.

A friend of mine bought ebook devices for his children but they are back to
paper books now because the devices were not kid-proof enough: you can sit
on a book but not on an ebook reader.

The more general devices (pads) have similar problems. I was surprised to
see that an iPad is a single user device. One can hide some options behind
passwords but I'm not sure if parents want children to read their mail, change
preferences, install any application they like, etc. This makes pads not that
family friendly and suggests that such a personal device has to be bought for
each member. In which case it suddenly becomes a real expensive adventure.
So, unless the prices drop drastically, pads are not a valid large scale alternative
for books yet.

It might sound like I'm not that willing to progress, but that’s not true. For
instance, I'm already an enthusiastic user of a media player infrastructure.?®

27 http://www.liquavista.com/files/LQV0905291LL5-15.pdf
28 The software and hardware was developed by SlimDevices and currently is available as Logitech

E-books: Old wine in new bottles 193

The software is public, pretty usable, and has no vendor lock-in. Now, it would
make sense to get rid of traditional audio media then, but this is not true. I still
buy cps if only because I then can rip them to a proper lossless audio format
(FLac). The few FLacs that I bought via the Internet were from self-publishing
performers. After the download I still got the cps which was nice because the
booklets are among the nicest that I've ever seen.

Of course it makes no sense to scan books for ebook devices so for that we de-
pend on a publishing network. I expect that at some point there will be proper

tools for managing your own electronic books and in most cases a simple file

server will do. And the most open device with a proper screen will become my

favourite. Also, I would not be surprised if ten years from now, many authors

will publish themselves in open formats and hopefully users will be honest

enough to pay for it. I'm not too optimistic about the latter, if only because I ob-
serve that younger family members fetch everything possible from the Internet

and don’t bother about rights, so we definitely need to educate them. To some

extent publishers of content deserve this behaviour because more than I like I

find myself in situations where I've paid some 20 euro for a cp only to see that

half a year later you can get it for half the price (sometimes it also happens

with books).

Given that eventually the abovementioned problems and disadvantages will be
dealt with, we can assume that ebooks are here and will stay forever. So let’s
move on to the next section and discuss their look and feel.

20.4 Interactivity

The nice thing about a paper book is that it is content and interface at the same
time. It is clear where it starts and ends and going from one page to another is
well standardized. Putting a bookmark in it is easy as you can fall back on any
scrap of paper lying around. While reading you know how far you came and
how much there is to come. Just as a desktop on a desktop computer does not
resemble the average desktop, an ebook is not a book. It is a device that can
render content in either a given or more free-form way.

However, an electronic book needs an interface and this is also where at the
moment it gets less interesting. Of course the Internet is a great place to wander
around and a natural place to look for electronic content. But there are some
arguments for buying them at a bookshop, one being that you see a lot of
(potentially) new books, often organized in topics in one glance. It's a different
way of selecting. I'm not arguing that the Internet is a worse place, but there

Squeezeserver. Incidentally I can use the iPad as an advanced remote control.

194 E-books: Old wine in new bottles

is definitely a difference: more aggressive advertisements, unwanted profiling
that can narrow what is presented to a few choices.

Would I enter a bookshop if on the display tables there were stacks of (current)
ebook devices showing the latest greatest books? I can imagine that at some
point we will have ebook devices that have screens that run from edge to edge
and then we get back some of the appeal of book designs. It is that kind of
future devices that we need to keep in mind when we design electronic docu-
ments, especially when after some decades we want them to be as interesting
as old books can be. Of course this is only true for documents that carry the
look and feel of a certain time and place and many documents are thrown away.
Most books have a short lifespan due to the quality of the paper and binding so
we should not become too sentimental about the transition to another medium.

Once you're in the process of reading a book not much interfacing is needed.
Simple gestures or touching indicated areas on the page are best. For more
complex documents the navigation could be part of the design and no screen
real estate has to be wasted by the device itself. Recently I visited a school-
related exhibition and I was puzzled by the fact that on an electronic school-
board so much space was wasted on colorful nonsense. Taking some 20% off
each side of such a device brings down the effective resolution to 600 pixels
so we end up with 10 pixels or less per character (shown at about 1 cm width).
At the same exhibition there were a lot of compensation programs for dyslexia
advertised, and there might be a relationship.

20.5 Formatting

So how important is the formatting? Do we prefer reflow on demand or is a
more frozen design that suits the content and expresses the wish of the author
more appropriate? In the first case HTML is a logical choice, and in the second
one pDF makes sense. You design a nice HTML document but at some point the
reflow gets in the way. And yes, you can reflow a pDF file but it's mostly a joke.
Alternatively one can provide both which is rather trivial when the source code
is encoded in a systematic way so that multiple output is a valid option. Again,
this is not new and mostly a matter of a publisher’s policy. It won’t cost more to
store in neutral formats and it has already been done cheaply for a long time.

Somewhat interfering in this matter is digital rights management. While it is
rather customary to buy a book and let friends or family read the same book, it
can get complicated when content is bound to one (or a few) devices. Not much
sharing there, and in the worst case, no way to move your books to a better
device. Each year in the Netherlands we have a book fair and bookshops give
away a book specially written for the occasion. This year the book was also

E-books: Old wine in new bottles 195

available as an ebook, but only via a special code that came with the book. I
decided to give it a try and ended up installing a broken application, i.e. I could
not get it to load the book from the Internet, and believe me, I have a decent
machine and the professional ppF viewer software that was a prerequisite.

20.6 Using TgX

So, back to Dave’s question: if CoNTEXT can generate ebooks in the Epub format.
Equally interesting is the question if TEgX can format an Epub file into a (say)
pDF file. As with much office software, an Epub file is nothing more than a
zip file with a special suffix in which several resources are combined. The
layout of the archive is prescribed. However, by demanding that the content
itself is in HTML and by providing a stylesheet to control the renderer, we don’t
automatically get properly tagged and organized content. When I first looked
into Epub, I naively assumed that there was some well-defined structure in
the content; turns out this is not the case.

Let's start by answering the second question. Yes, CoNTgXT can be used to
convert an Epub file into a pDF file. The natural followup question is if it can
be done automatically, and then some more nuance is needed: it depends. If
you download the Epub for “A tale of two cities” from Charles Dickens from the
Gutenberg Project website and look into a chapter you will see this:

<hl id="pgepubid000OO0">A TALE OF TWO CITIES</hl>

<h2 id="pgepubid00OO1">A STORY OF THE FRENCH REVOLUTION</h2>
<p>
</p>

<h2>By Charles Dickens</h2>

<p>

</p>

<hr/>

<p>

</p>

<h2 1id="pgepubid00002">Contents</h2>

What follows is a table of contents formatted using HTML tables and after that
<h2 id="pgepubid00004">I. The Period</h2>

So, a level two header is used for the subtitle of the book as well as a regular
chapter. I must admit that I had to go on the Internet to find this snippet as

I wanted to check its location. On my disk I had a similar file from a year ago
when I first looked into Epub. There I have:

196 E-books: Old wine in new bottles

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en">
<head>
<title>I | A Tale of Two Cities</title>
</head>
<body>
<div class="body">
<div class="chapter">

<h3 class="chapter-title">I</h3>
<h4 class="chapter-subtitle">The Period</h4>

I also wanted to make sure if the interesting combination of third and fourth
level head usage was still there but it seems that there are several variants
available. It is not my intention to criticize the coding, after all it is valid HTML
and can be rendered as intended. Nevertheless, the first snippet definitely
looks worse, as it uses breaks instead of css spacing directives and the second
wins on obscurity due to the abuse of the head element.

These examples answer the question about formatting an arbitrary Epub file:
“no”. We can of course map the tagging to CoNnTgXT and get pretty good results
but we do need to look at the coding.

As such books are rather predictable it makes sense to code them in a more
generic way. That way generic stylesheets can be used to render the book
directly in a viewer and generic CoNTgXT styles can be used to format it dif-
ferently, e.g. as PDF.

Of course, if | were asked to set up a workflow for formatting ebooks, that would
be relatively easy. For instance the Gutenberg books are available as raw text
and that can be parsed to some intermediate format or (with MkIV) interpreted
directly.

Making a style for a specific instance, like the Dickens book, is not that complex
either. After all, the amount of encoding is rather minimal and special bits
and pieces like a title page need special design anyway. The zipped file can be
processed directly by ConNTgXT, but this is mostly just a convenience.

As Epub is just a wrapper, the next question is if CoNTEXT can produce some
kind of HTML and the answer to that question is positive. Of course this only
makes sense when the input is a TgX source, and we have argued before that
when multiple output is needed the user might consider a different starting
point. After all, CoNTEXT can deal with xMmL directly.

E-books: Old wine in new bottles 197

The main advantage of coding in TgX is that the source remains readable and
for some documents it’s certainly more convenient, like manuals about TgX. In
the reference manual ‘CoNTEXT Lua Documents’ (cLp) there are the following
commands:

\setupbackend
[export=yes]

\setupinteraction
[title=Context Lua Documents,
subtitle=preliminary version,
author=Hans Hagen]

At the cost of at most 10% extra runtime an xML export is generated in addi-
tion to the regular ppr file. Given that you have a structured TgX source the
exported file will have a decent structure as well and you can therefore trans-
form the file into something else, for instance HrML. But, as we already have a
good-looking ppF file, the only reason to have HTmL as well is for reflowing. Of
course wrapping up the HTML into an Epub structure is not that hard. We can

probably even get away from wrapping because we have a single self-contained
file.

75 cid-micv.pd - Adobe Acrobat Pro

File Edit View Window Help B *

floe- BE BB ©02BDHE v

® @[] k[| @ @ [z=]-]| 5 Tools | Comment | Share
5.3 Styles

Say that you want to typeset a word in a bold font. You can do that this way:

context("This is ")
context.bold ("important")

preliminary, uncorrected version - April 13, 2011

36 Some more examples

context("!")

Now imagine that you want this important word to be in red too. As we have a nested
command, we end up with a nested call:

context("This is ")
context.bold(function() context.color({ "red" }, "important") end)
context ("!")

or

context("This is ")
context.bold(context.delayed.color({ "red" }, "important"))
context ("!")

In that case it’s good to know that there is a command that combines both features:

context("This is ")
context.style({ style = "bold", color = "red" }, "important")
context ("!")

But that is still not convenient when we have to do that often. So, vou can wrap the style
- — — —

Figure 20.2 A page from the cLp manual in pPDF.

The \setupbackend command used in the cLb manual has a few more options:

198 E-books: Old wine in new bottles

\setupbackend
[export=cld-mkiv-export.xml,
xhtml=cld-mkiv-export.xhtml,
css={cld-mkiv-export.css,mathml.css}]

We explicitly name the export file and in addition specify a stylesheet and an
alternative xatMmL file. If you can live without hyperlinks the xmL file combined
with the cascading style sheet will do a decent job of controlling the formatting.

In the cLp manual chapters are coded like this:
\startchapter[title=A bit of Lual
\startsection[title=The language]

The xmL output of this

<division detail='bodypart'>
<section detail='chapter' location='aut:3'>

<sectionnumber>l</sectionnumber>

<sectiontitle>A bit of Lua</sectiontitle>

<sectioncontent>

<section detail='section'>

<sectionnumber>1.1l</sectionnumber>
<sectiontitle>The language</sectiontitle>
<sectioncontent>

The uTML version has some extra elements:

<xhtml:a name="aut 3">
<section location="aut:3" detail="chapter">

The table of contents and cross references have xhtml:a elements too but with
the href attribute. It’s interesting to search the web for ways to avoid this, but
so far no standardized solution for mapping xML elements onto hyperlinks has
been agreed upon. In fact, getting the css mapping done was not that much
work but arriving at the conclusion that (in 2011) these links could only be
done in a robust way using HTML tags took more time.?® Apart from this the
css has enough on board to map the export onto something presentable. For
instance:

29 In this example we see the reference aut:3 turned into aut 1. This is done because some
browsers like to interpret this colon as a url.

E-books: Old wine in new bottles 199

sectioncontent {
display: block ;
margin-top: lem ;
margin-bottom: lem ;

section[detail=chapter], section[detail=title] {
margin-top: 3em ;
margin-bottom: 2em ;

section[detail=chapter]>sectionnumber {
display: inline-block ;
margin-right: lem ;
font-size: 3em ;
font-weight: bold ;

As always, dealing with verbatim is somewhat special. The following code does
the trick:

verbatimblock {
background-color: #9999FF ;
display: block ;
padding: 1lem ;
margin-bottom: lem ;
margin-top: lem ;
font-family: "Lucida Console", "DejaVu Sans Mono", monospace ;

verbatimline {
display: block ;
white-space: pre-wrap ;

}
verbatim {

white-space: pre-wrap ;

color: #666600 ;

font-family: "Lucida Console", "DejaVu Sans Mono", monospace ;
}

The spacing before the first and after the last one differs from the spacing
between lines, so we need some extra directives:

200 E-books: Old wine in new bottles

verbatimlines+verbatimlines {
display: block ;
margin-top: lem ;

This will format code like the following with a bluish background and inline
verbatim with its complement:

<verbatimblock detail='typing'>
<verbatimlines>
<verbatimline>function sum(a,b)</verbatimline>
<verbatimline> print(a, b, a + b)</verbatimline>
<verbatimline>end</verbatimline>
</verbatimlines>
</verbatimblock>

The hyperlinks need some attention. We need to make sure that only the links
and not the anchors get special formatting. After some experimenting I arrived
at this:

alhref] {
text-decoration: none ;
color: inherit ;

alhref]:hover {
color: #770000 ;
text-decoration: underline ;

Tables are relatively easy to control. We have tabulate (nicer for text) and nat-
ural tables (similar to the HTML model). Both get mapped into HTML tables with
css directives. There is some detail available so we see things like this:

tablecell[align=flushleft] {
display: table-cell ;
text-align: left ;
padding: .lem ;

It is not hard to support more variants or detail in the export but that will
probably only happen when I find a good reason (a project), have some personal
need, or when a user asks for it. For instance images will need some special

E-books: Old wine in new bottles 201

attention (conversion, etc.). Also, because we use MetaPost all over the place
that needs special care as well, but a regular (novel-like) ebook will not have
such resources.

||)2 || [files/Ev/context/manuals/cld-midvcld-miiv-export shtml 77 -] [#8~ Googte ENE N - B

&5 Convert ~

5.3 Styles

Say that you want to typeset a word in a bold font. You can do that this way:

@
M

Now imagine that you want this important word to be in red too. As we have a nested command, we
end up with a nested call:

_ *
or

Context Lua Documents

In that case it's good to kmow that there is a command that combines both features:

But that is still not convenient when we have to do that often. So, yvou can wrap the style switch in a -
Pl — .
i : _ _ : D #

Figure 20.3 A page from cLp manual in HTML.

As an extra, a template file is generated that mentions all elements used, like
this:

section[detail=summary] {
display: block ;

with the inline and display properties already filled in. That way I could see
that I still had to add a couple of directives to the final css file. It also became
clear that in the cLb manual some math is used that gets tagged as MaTaML,
so that needs to be covered as well.3° Here we need to make some decisions as

202 E-books: Old wine in new bottles

30

we export UnicobpkE and need to consider support for less sophisticated fonts.
On the other hand, the W3C consortium has published css for this purpose so
we can use these as a starting point. It might be that eventually more tuning
will be delegated to the xuTMmL variant. This is not much extra work as we have
the (then intermediate) xMmL tree available. Thinking of it, we could eventually
end up with some kind of css support in ConNTgXr itself.

It will take some experimenting and feedback from users to get the export right,
especially to provide a convenient way to produce so-called Epub files directly.
There is already some support for this container format. If you have enabled
XHTML export, you can produce an Epub archive afterwards with:

mtxrun --script epub yourfile

For testing the results, open source programs like calibre are quite useful.
It will probably take a while to figure out to what extent we need to support
formats like Epub, if only because such formats are adapted on a regular basis.

20.7 The future

It is hard to predict the future. I can imagine that given the user interface that
has evolved over ages paper books will not disappear soon. Probably there will
be a distinction between read-once and throw-away books and those that you
carry with you your whole life as visible proof of that life. I can also imagine
that (if only for environmental reasons) ebooks (hopefully with stable devices)
will dominate. In that case traditional bookshops will disappear and with them
the need for publishers that supply them. Self-publishing will then be most
interesting for authors and maybe some of them (or their helpful friends) will
be charmed by TgX and tinkering with the layout using the macro language. 1
can also imagine that at some point new media (and I don’t consider an ebook
a new medium) will dominate. And how about science fiction becoming true:
downloading stories and information directly into our brains.

It reminds me of something I need to do some day soon: get rid of old journals
that I planned to read but never will. I would love to keep them electronically
but it is quite unlikely that they are available and if so, it’s unlikely that I
want to pay for them again. This is typically an area where I'd consider using
an ebook device, even if it's suboptimal. On the other hand, I don’t consider
dropping my newspaper subscription yet as I don’t see a replacement for the
regular coffeestop at the table where it sits and where we discuss the latest

Some more advanced MatHML output will be available when the matrix-related core commands
have been upgraded to MkIV and extended to suit today’s needs.

E-books: Old wine in new bottles 203

Nnews.

The nice thing about an analogue camera is that the image carrier has been
standardized and you can buy batteries everywhere. Compare this with their
digital cousins: all have different batteries, there are all kinds of memory cards,
and only recently has some standardization in lenses shown up. There is a wide
range of resolutions and aspect ratios. Other examples of standardization are
nuts and bolts used in cars, although it took some time for the metric system
to catch on. Books have different dimensions but it's not hard to deal with
that property. Where desktop hardware is rather uniform everything portable
is different. For some brands you need a special toolkit with every new device.
Batteries cannot be exchanged and there are quite some data carriers. On
the other hand, we're dealing with software and if we want we can support
data formats forever. The MicrosorT operating systems have demonstrated
that programs written years ago can still run on updates. In addition LiNUX
demonstrates that users can take and keep control and create an indepen-
dence from vendors. So, given that we can still read document sources and
given that they are well structured, we can create history-proof solutions. I
don’t expect that the traditional publishers will play a big role in this if only
because of their short term agendas and because changing ownerships works
against long term views. And programs like TgX have already demonstrated
having a long life span, although it must be said that in today’s rapid upgrade
cycles it takes some courage to stay with it and its descendants. But downward
compatibility is high on the agenda of its users and user groups which is good
in the perspective of discussing stable ebooks.

Let’s finish with an observation. Books often make a nice (birthday) present
and finding one that suits is part of the gift. Currently a visible book has some
advantages: when unwrapped it can be looked at and passed around. It also
can be a topic of discussion and it has a visible personal touch. I'm not so
sure if vouchers for an ebook have the same properties. It probably feels a bit
like giving synthetic flowers. I don't know what percentage of books is given as
presents but this aspect cannot be neglected. Anyway, [wonder when I will buy
my first ebook and for who. Before that happens I'll probably have generated
lots of them.

204 E-books: Old wine in new bottles

21 Italic correction

21.1 Introduction

During the 2011 CoNTgXrt conference there were presentations by Thomas Sch-
mitz and Jano Kula where they demonstrated advanced rendering of document
source encoded in xmML. When looking at the examples on screen using many
fonts I realized that (also given my own workflows) it was about time to look
into automated italic correction in the perspective of MkIV.

In the Lucida Math project it already became clear that italics in OPENTYPE
math fonts are to be ignored. And, as in regular OrPENTYPE fonts italic correction
is basically non-existent some alternative approach is needed there as well. In
CoNTgXT you can already for quite a while enable the itlc feature which adds
italic correction to shapes using some heuristics. However, in TEX this kind of
correction is never applied automatically but is triggered by the \/ command.
Commands like \em deal with italic correction automatically but otherwise you
need to take care of it yourself. In a time when you not always have control over
the source code or when you are coding in a format that has no provisions for
it (for instance xmML) some further automatism makes sense. You might even
wonder if explicit corrections still make sense.

In this chapter we discuss an alternative approach in MkIV. This is a typical ex
ample of an experimental feature that might need further discussion (probably
at a next conference). One of our mottos is that the document source should
be as clean as possible and this is one way to go.

21.2 Some preparations

Adding italic correction to a font is easy: you just add the right feature directive.
You can do this for all italic (or oblique) fonts in one go:

\definefontfeature[default][default][itlc=yes]

At some point this might become the default in ConTgXrt. After that the \/
command can do the job, but as mentioned, we don’t really want to do this
each time it's needed. If you never plan to use that command you can disable
TEX’s built-in mechanism completely by setting the textitalics parameter.

\definefontfeature[default][default][itlc=yes, textitalics=yes]

It even makes sense then to redefine the the \/ command:

Italic correction 205

\let\/=/

so that we have a nice escape in tune with the other escapes.

21.3 Controlling correction

In the following examples we will use Cambria as an example as it shows the
effect rather prominently.

We start with a simple case: just an emphasized word in a small line:
\setupitaliccorrection[none]\tf test {\it test} test
\setupitaliccorrection[none]\tf test {\it test\/} test}

\setupitaliccorrection[text]\tf test {\it test} test}

Decorated for the purpose of this demonstration this comes out as follows:

test fest test

test test test

In the first line no correction is applied. The second line shows TgX in action
and the third line demonstrates the automatically applied correction. The ex-
plicit directive in the second lines of course gives most control but is also a no-
go when you have lots of them.

Actually, TgX is clever enough to ignore multiple corrections: it will only apply
one after a glyph.

\setupitaliccorrection[none]\tf test {\it test} test}
\setupitaliccorrection[none]\tf test {\it test\/} test}
\setupitaliccorrection[none]\tf test {\it test\/\/\/\/} test}

So we get this:

206 Italic correction

test test test

test fest test

It can be argued that in a decent usage of CoNTEXT you will never switch to
another font this way. Instead you will do this:

\definehighlight[important][style=\1it]

test \important{test} test

However, this will not correct at all, so in fact you have to use an environment
that takes care of automatically adding the \/ at the end. Quite from the start
the \em command does this, with the added benefit of dealing with bold and
nested emphasizing.

Which brings us to cases where you don't want to apply correction, like:
\setupitaliccorrection[none]\tf test {\it test}{\bi test}
\setupitaliccorrection[none]\tf test {\it test\/}{\bi test}

\setupitaliccorrection[text]\tf test {\it test}{\bi test}

Now we get:

A variant on this is:

\setupitaliccorrection[none]\tf test {\it test \bi test}
\setupitaliccorrection[none]\tf test {\it test\/ \bi test}
\setupitaliccorrection[text]\tf test {\it test \bi test}

which gives:

Italic correction 207

test test test

test test test
test test test

So, no italic correction is added between italic shapes of different fonts. Ideally
we should have some inter-character kerning, but that is currently beyond this
mechanism.

What does the text mean in the setup command? The following table tells
what keywords can be passed:

text only apply correction to running text

always also apply correction to end end of a list
global enable this mechanism globally (more efficient)
none disable this mechanism

The difference between text and always is best demonstrated with an example:
\setupitaliccorrection[none]\tf test {\it test}}
\setupitaliccorrection[always]\tf test {\it test}}

\setupitaliccorrection[text]\tf test {\it test}}

This gives:

test fest

The always option will flush pending corrections at a boundary, like the edge
of a box (or line). Contrary to TiX's italic corrections, the MkIV variants are
glue and they will disappear whenever TgX likes to get rid of glue, for instance
at line breaks.3!

31 There is some room for improvement here, for instance we can take penalties into account.

208 Italic correction

While writing this, we're still talking of an experimental setup so there might
be extensions or changes to this mechanism.32

As it’s just a guess you can influence the amount of automatic correction by
specifying a factor. We show an exmaple of this.

\definefontfeature[itclyes] [default][itlc=yes, textitalics=delay]
\definefontfeature[itclyesten] [default][itlc=10, textitalics=delay]
\definefontfeature[itclyeshundred] [default] [itlc=100,textitalics=delay]

\definefont[itlcitalicyes] [name:cambriaitalic*itclyes sa 4]
\definefont[itlcitalicten] [name:cambriaitalic*itclyesten sa 4]

\definefont[itlcitalichundred] [name:cambriaitalic*itclyeshundred sa 4]

We show all three variants:

\setupitaliccorrection[text]\itlcregular test {\itlcitalicyes test}
test\par
\setupitaliccorrection[text]\itlcregular test {\itlcitalicten test}
test\par

\setupitaliccorrection[text]\itlcregular test {\itlcitalichundred test}
test\par

This becomes:

test test test

21.4 Saving resources
You can keep track of what gets done by enabling a tracker:
\enabletrackers[typesetters.italics]

You will notice that there are occasional reports about correction being inserted,

32 For instance, I'm considering extending this mechanism to provide kerning between fonts,
something for a rainy afternoon.

Italic correction 209

ignored and removed. As node lists are parsed there is some extra overhead,
but not that much. The TgX solution (using \/) is quit efficient because that
command directly injects a kern without too much analysis. You can gain some
efficiency for the automated variant by using the global option:

\setupitaliccorrection[always,global]

Also, you can disable TgX's mechanism effectively by not passing the italic
information to the font machinery at all:

\definefontfeature[italics][default][itlc=yes,textitalics=yes]

The itlc feature will tag the font for italic corrections but the textitalics
option will make sure that this information is not passed to the TigX font handler
but kept private.

As adding the italic corrections to a font takes memory and a little bit of extra
load time, we can delay this process till it is really needed.

\definefontfeature[italics][default][itlc=yes,textitalics=delay]

In this case the correction will be calculated when needed and cached for later
usage. At some point this might become the default ConTiXT behaviour.

21.5 Math

Italic correction in math plays a role when dealing with traditional TiX fonts,
where glyph dimensions can have a special meaning. However, in OPENTYPE
math the correction is mostly ignored. You can disable it altogether and let an
alternative mechanism deal with it. This mechanism is still somewhat experi-
mental but is controlled as follows:

\switchtobodyfont[xits]

\setupmathematics[italics=no] test $a;b;a; b; f;$ test}
\setupmathematics[italics=1] test $a;b;a; b; f;$ test}
\setupmathematics[italics=2] test $a;b;a; b; f;$ test}
\setupmathematics[italics=3] test $a;b;a; b; f;$ test}
\setupmathematics[italics=4] test $a;b;a; b; f;$ test}

This gives:

210 Italic correction

The actual rendering can depend on the settings in the goodies file, for in-
stance:

local italics = {

defaultfactor = 0.025,
disableengine = true, % feature: mathitalics=yes
corrections = {
-- [06x1D44E] = 0.99, -- a (fraction of quad)
-- [0x1D44F] = 100, -- b (font points)
[0x1D453] = -0.0375, -- f
}
}
return {
name = "xits-math",
version = "1.00",
comment = "Goodies that complement xits (by Khaled Hosny).",
author = "Hans Hagen",
copyright = "ConTeXt development team",
mathematics = {
italics = {
["xits-math"] = italics,
b
}
}

Corrections can be specified in the font’s units or as a fraction (smaller than
1) in which case it will be multiplied by lem. You can set the font feature
mathitalics to yes to inhibit the engine’s built-in mechanism completely and
rely on the alternative approach but as users will seldom define math feature

Italic correction 211

sets themselves, there is also the possibility to disable the engine in the goodies
file.

The process can be watched by setting a tracker:

\enabletrackers[math.italics]

212 Italic correction

22 Optical optimization

One of the objectives of the oriental TigX project has always been to play with
paragraph optimization. The original assumption was that we needed an ad-
vanced non-standard paragraph builder to Arabic done right but in the end
we found out that a more straightforward approach is to use a sophisticated
OrPeNTYPE font in combination with a paragraph postprocessor that uses the
advanced font capabilities. This solution is somewhat easier to imagine that a
complex paragraph builder but still involves quite some juggling.

At the June 2012 meeting of the nTG there was a talk about typesetting Devana-
gari and as fonts are always a nice topic (if only because there is something to

show) it made sense to tell a bit more about optimizing Arabic at the same time.
In fact, that presentation was already a few years too late because a couple of
years back, when the oriental TgX project was presented at TUG and Dante

meetings, the optimizer was already part of the ConTgXt core code. The main

reason for not advocating is was the simple fact that no font other than the

(not yet finished) Husayni font provided the relevant feature set.

The lack of advanced fonts does not prevent us from showing what we're dealing
with. This is because the CoNTEXT mechanisms are generic in the sense that
they can also be used with regular Latin fonts, although it does not make that
much sense. Of course only MKIV is supported. In this chapter we will stick to
Latin. A more extensive article is published by Idris Samawi Hamid and myself
in the proceedings of the combined eurclgXand CoNTEXT conference.

When discussing optical optimization of a paragraph, a few alternatives come
to mind:

e One can get rid of extensive spaces by adding additional kerns between
glyphs. This is often used by poor mans typesetting programns (or routines)
and can be applied to non-connecting scripts. It just looks bad.

e Glyphs can be widened a few percent and this is an option that LuaATEgX in-
herits from its predecessor pDFIEX. Normally this goes unnoticed although
excessive scaling makes things worse, and yes, one can run into such ex-
amples. This strategy goes under the name hz-optimization (the hz refers
to Hermann Zaph, who first came with this solution).

e Areal nice solution is to replace glyphs by narrower or wider variants. This

is in fact the ideal hz solution but for it to happen one not only needs needs
fonts with alternative shapes, but also a machinery that can deal with them.

Optical optimization 213

e An already old variant is the one first used by Gutenberg, who used alter-
native cuts for certain combinations of characters. This is comparable with
ligatures. However, to make the look and feel optimal, one needs to analyze
the text and make decisions on what to replace without loosing consistency.

The solution described here does a bit of everything. As it is mostly meant for
a connective script, the starting point is how a scribe works when filling up
a line nicely. Depending on how well he or she can see it coming, the writing
can be adapted to widen or narrow following words. And it happens that in
Arabic scripts there are quite some ways to squeeze more characters in a small
area and/or expand some to the extreme to fill up the available space. Shapes
can be wider or narrower, they can be stacked and they can get replaced by
ligatures. Of course there is some interference with the optional marks on top
and below but even there we have some freedom. The only condition is that
the characters in a word stay connected.

So, given enough alternative glyphs, one can imagine that excessive interword
spacing can be avoided. However, it is non-trivial to check all possible combi
nations. Actually, it is not needed either, as esthetic rules put some bounds
on what can be done. One should more think in terms of alternative strategies
or solutions and this is the terminology that we will therefore use.

Easiest is to demonstrate this with Latin, if only because it's more intuitive
to see what happens. This is not the place to discuss all the gory details so
you have to take some of the configuration options on face value. Once this
mechanism is stable and used, the options can be described. For now we stick
to presenting the idea.

Let’s assume that you know what font features are. The idea is to work with
combinations of such features and figure out what combination suits best. In
order not to clutter a document style, these sets are defined in so called goodie
files. Here is an except of demo. 1fg:

return {
name = "demo",
version = "1.01",
comment = "An example of goodies.",
author = "Hans Hagen",
featuresets = {
simple = {
mode = "node",
script = "latn"
b
default = {

214 Optical optimization

mode = "node",
script = "latn",
kern = "yes",

b

ligatures = {
mode = "node",
script = "latn",
kern = "yes",
liga = "yes",

b

smallcaps = {
mode = "node",
script = "latn",
kern = "yes",
smcp = "yes",

b

}’

solutions = {
experimental = {

b
b

less = {

"ligatures", "simple",
}
more = {

"smallcaps",

}’

\definefontfeature

[solution-demo]
[goodies=demo,
featureset=default]

You can use a set as follows:

\definefont

[SomeTestFont]
[texgyrepagellaregular*solution-demo at 10pt]

We see four sets of features here. You can use these sets in a ConTEXT feature
definition, like:

Optical optimization 215

33

So far, there is nothing special and new, but we can go a step further.

\definefontsolution
[solution-a]
[goodies=demo,

solution=experimental,
method={normal,preroll},
criterium=1]

\definefontsolution

[solution-b]

[goodies=demo,
solution=experimental,
method={normal,preroll,split},
criterium=1]

Here we have defined two solutions. They refer to the experimental solution in
the goodie file demo. 1fg. A solution has a less and a more entry. The featuresets
mentioned there reflect ways to make a word narrower of wider. There can be
more than one way to do that, although it comes at a performance price. Before
we see how this works out we turn on a tracing option:

\enabletrackers
[builders.paragraphs.solutions.splitters.colors]

This will color the words in the result according to what has happened. When
a featureset out of the more category has been applied, the words turn green,
when less is applied, the word becomes yellow. The preroll option in the
method list makes sure that we do a more extensive test beforehand.

\SomeTestFont \startfontsolution[solution-a]
\input zapf \par
\stopfontsolution

In figure 22.1 we see what happens. In each already split line words get wider
or narrower until we're satisfied. A criterium of 1 is pretty strict33. Keep in
mind that we use some arbitrary features here. We try removing kerns to get
narrower although there is nothing that guarantees that kerns are positive.
On the other hand, using ligatures might help. In order to get wider we use
smallcaps. Okay, the result will look somewhat strange but so does much
typesetting nowadays.

This number reflects the maximum badness and future versions might have a different mea-
sure with more granularity.

216 Optical optimization

There is one pitfall here. This mechanism is made for a connective script where
hyphenation is not used. As a result a word here is actually split up when it
has discretionaries and of course this text fragment has. It goes unnoticed in
the rendering but is of course far from optimal.

\SomeTestFont \startfontsolution[solution-b]
\input zapf \par
\stopfontsolution

In this example (figure 22.2) we keep words as a whole but as a side effect we
skip words that are broken across a line. This is mostly because it makes not
much sense to implement it as Latin is not our target. Future versions of Con-
TXT might get more sophisticated font machinery so then things might look
better.

We show two more methods:

\definefontsolution
[solution-c]
[goodies=demo,

solution=experimental,
method={reverse,preroll},
criterium=1]

\definefontsolution

[solution-d]

[goodies=demo,
solution=experimental,
method={random,preroll,split},
criterium=1]

In figure 22.3 we start at the other end of a line. As we sort of mimick a scribe,
we can be one who plays safe at the start of corrects at the end.

In figure 22.4 we add some randomness but to what extent this works well

depends on how many words we need to retypeset before we get the badness of
the line within the constraints.

Optical optimization 217

Coming back ﬂo t[he use of typeﬂaées in elec-
tronic publishing: manBI of ﬂhe ne’w typog-

r%phers recelvk t&lglr kno’wrledgk: and miier ”

mation about tthe ﬁules of typogﬁbphbl from
booﬂs from comtputer magbzmes or tthe in-

Muctlon manuals which ﬂhebr gk:t w1tﬂ1 tthe
purchase of a PC or soﬁf&z@fe. There is no}t P
so much basic ins}fﬂﬁiétion, as of non as ﬂlfére
wbs in ﬂ}{e old dablé, sho’v\ﬁng ﬂl{e difﬂefences
betwken good and bad typogﬁgphic design.
ManBI people are]usﬁ ﬂééémated bB/ Hl{élr PC's
tI‘le‘S, and ﬂunk tﬂmt a w1delbl—pﬂalsed pro-
gﬁam called up on tthe screen, will malgb “

e}vkr}yﬂhmg auﬂpma’ac from no’w on.

Coming back 10 THE UsE oF typefaces in elec-
tronic publishing: manblwcm THE NEW typog-
rb};hers RECEIVE THEIR KNH&!LEDGE AND 1nﬂor}
mation ABOUT THE R’[JLES OF TYPOGRAPHY FRbM
book‘ér,ﬂ FRbM comh;{mlter magﬁgmes OR THE in-
INS’TR"‘JCTION MANUL—\LS which ﬂhebl gkﬁt w1ﬂ1‘ltﬁhe
PURH{ASE or A PC or SOFTW%RE. THERE 15 NHTH
so much basic ins}t'rﬁi&tion, as of noM‘a‘s tﬂiére
wbs IN THE OLD DWQSHO’WIN#WTHE DIFFERENkEs
betwken GOOD AND B‘Aij TYPOGRAPHIC DESIGN‘. J
Many people are]usH%scmated bbl tﬁ{élr PC's
TRIC‘KS AND THINK THA\T a Wldelbl—prblsed pro-

PRbGRAM C‘ALLED UP ON THE SCREENL WILL malgb

e}vkzr}yﬁhmg auﬂomatlc from no’w on.

normal

Figure 22.1

solution

Solution a.

Coming back ﬂo the use of typeﬂéées in elec-
tronic publishing: manBrwof ﬂhé ne’W typog-

rbphers recelvk: tﬂ'{élr knthédgk and 1r1ﬂo‘£+

mation about tthe ﬁules of typog&bphbr from
booHs from comfputer magb21nes or $1e in-

Muctlon manuals which ﬂhebf kxt w1tﬂ1 tthe
purchase of a PC or soﬂf&ﬁre. There is noﬁ “
so much basic ins}trmétion, as of no’v‘\}l és ﬂﬂére
wbs in tﬂ{e old dabfé, sho’v‘\}i‘ng tﬁ{é difﬁerences
be‘w\%én good and bad typogLrﬁphic design.
Manbfpeople are jusk ﬂaééinated bbf ﬂﬂéir PC's
tricl#‘sj,m and tﬂunk tthat a widel&ipﬂé{Sed pro-

gilgm, called up on ﬂhe screen, will makk?

e&gr’ytﬂ{mg autbrhatic from I’IO‘V\; on.

Comle back Tb THE USE OF TYPEF‘A#ES IN ELEC-
TRbNIC PUBLISHINF MANY OF THE NEW TYPOG-
RAPHERS RECEIVE THEIR KNb’\/\’LEDGE AND INFbR-
MAaTION ABOUT THE R’ULES OF TYPOG‘I;ZPHY FRbM
bool#é,ﬂ FRbM COI‘I‘LESTER maé;;INES OR THE IN-
Sﬁé’UéTION MANUALS WHIC‘H"THEY GET WITH THE
purchV{“ASE of A PC or SOFTW%RE. THERE 15 NH; ”
so much basic ins}tr&étion, as of no’wl as th{ére
Wbs IN THE OLD D‘A&g, SHO’\&IN#J‘THE DIFFERENkES
beTwWEEN GOOD AND BL&D TYPOGRAPHIC DESIGN‘.V
Many people are]usftha‘scmated bb}‘tﬁ{élr PC's
TRIC‘KS AND THINK THA\T a w1delbi—pr}alsed pro-

gﬁbm CLALLED UP ON THE SCREENL WILL MAKE

e&kr‘yﬂhmg audomatlc from no’w on.

normal

solution

Figure 22.2 Solution b.

218 Optical optimization

Coming back ﬂo t[he use of typeﬂaées in elec-
tronic publishing:‘ ”manBI of ﬂhe ne’w typog-
r%phers recelvk t&félr kno’wrledgk: and miier ”

mation about tthe ﬁules of typogﬁbphbl from
booﬂs from comtputer magbzmes or tthe in-

Muctlon manuals which ﬂhebr gk:t w1tﬂ1 tthe
purchase of a PC or soﬁf&z@fe. There is no}t P
so much basic ins}fﬂﬁiétion, as of HOMJ{ as ﬂl{ére
wbs in ﬂ}{e old dablé, shoMing ﬂl{e difﬂefences
betwken good and bad typogﬁgphic design.
ManBI people are]usﬁ“ ﬂééé1nated bB/ Hl{élr PC's
tI‘le‘S, and ﬂunk tﬂmt a w1delbl—pﬂalsed pro-
gﬁam called up on tthe screen, will malgb

e}v#er}yﬂhmg auﬂpma’ac from no’w on.

Coming back 10 THE USE OF typeﬂaces N elec-
tronic publishing: MaNY OF THE neM typog-
rbphers RECEIVE THEIR KNHWLEDGE AND 1nﬂor}
mation ABOUT THE R}ULES OF TYPOGRAPHY FRbM
book‘ér,u FRbM chPUTER MA@I:AZINES OR THE in-
INShﬁbCTION MANU%LS WHICh—[THEY GET WITH THE
PURH]V{‘ASE or A PC or SOFTW%RE. THERE 15 NHTH
so much basic insﬁr‘ﬁiétion, as of no’leés THERE
w%s IN THE OLD DM;EI, V‘SHO’\/;;INE‘“THE DIFFERENkEs
BETWEEN GOOD AND bad TyrocrapHiC design.
ManBz people are]usﬁ‘ﬂ‘és‘,ﬁcmated bBI HER PC's
TRIC‘KS AND THINK THA\T A Wldelbl—prblsed pro-

PRbGRAM C‘ALLED UP ON THE SCREENL WILL malgb

e}vkzr}yﬁhmg auﬂomatlc from no’w on.

normal

Figure 22.3

solution

Solution c.

Coming back ﬂo the use of typeﬂéées in elec-
tronic publishing: Vman&wof ﬂhé ne’W typog-
rbphers recelvk: tﬂ'1é1r knOMﬂéagk and 1r1ﬂo¥+

mation about tthe ﬁules of typog&bphbf from
booHs from comfputer magbzmes or $1e in-

Muctlon manuals which ﬂhebf kxt w1tﬂ1 tthe
purchase of a PC or soﬂf&ﬁre. There is noﬁ “
so much basic ins}trm&tion, as of no’v‘\}l és ﬂﬂére
wbs in tﬂ{e old dabfé, sho’v‘\}i‘ng tﬁ{é difﬁerences
behﬁéén good and bad typogﬁgphic design.
Manbfpeople are jusﬁ ﬁaééinated bbljﬂﬂtéir PC's
tricl#‘sj:u and tﬂunk tthat a widel&Lpﬂé{Sed pro-
gﬁgm, called up on ﬂhe screen, will makké

e&gr’ytﬂ{mg autbrhatic from I’IO‘V\; on.

Coming back Tb ﬂhe use of typeﬂaces in ELEC-
TRbNIC PUBLISHINF MANY OF THE NEW TYPOG-
RAPHERS RECEIVE THEIR KNHWLEDGE AND INFbR-
MarioN ABOUT THE R’ULES OF TYpOg‘RAPHY FRbM
BOOKS, FRbM chh’UTER magAZINES OR THE IN-
s}rR’UCTION MANUALS WHICLH THEY GET WITH THE
PURCh{ASE of A PC or SOFTWLARE THERE IS Nk)’l‘ ”
so much basic 1ns r{uctmn as of nOM as THERE
wbs IN THE OLD DLA.M; ShO’\N‘INk TtHE difFERences
berwEeEN coop AND bad TYPOGRAPHIC deSIGN‘
Manbl people are]us}t ﬂascm%ﬁm bbl tthelr PC's
TRIC‘KS AND THINK THA\T A w1delbf—prblsed pro-

GRAM, CLALLED UP ON THE SCREENL WILL MAKE

e&kr‘yﬂhmg audomatlc from no’w on.

normal

Figure 22.4

solution

Solution d.

Optical optimization 219

220 Optical optimization

23 Updating the code base

23.1 Introduction

After much experimenting with new code in MkIV a new stage in CoNTgXT
development was entered in the last quarter of 2011. This was triggered by
several more or less independent developments. I will discuss some of them
here since they are a nice illustration of how CoNTEgXT evolves. This chapter
was published in TugBoat 103; thanks to Karl Berry and Barbara Beeton for
making it better.

23.2 Interfacing

Wolfgang Schuster, Aditya Mahajan and I were experimenting with an abstrac-
tion layer for module writers. In fact this layer itself was a variant of some new
mechanisms used in the MKIV structure related code. That code was among
the first to be adapted as it is accompanied by much Lua code and has been
performing rather well for some years now.

In CoNTEXT most of the user interface is rather similar and module writers are
supposed to follow the same route as the core of CoNTEXrt. For those who have

looked in the source the following code might look familiar:

\unexpanded\def\mysetupcommand
{\dosingleempty\domysetupcommand}

\def\domysetupcommand [#1]%

This implements the command \mysetupcommand that is used as follows:
\mysetupcommand[color=red,style=bold, ...]

The above definition uses three rather low-level interfacing commands. The
\unexpanded makes sure that the command does not expand in unexpected
ways in cases where expansion is less desirable. (Aside: The ConTgXT \unexpanded
prefix has a long history and originally resulted in the indirect definition of a
macro. That way the macro could be part of testing (expanded) equivalence.
When &-TgX functionality showed up we could use \protected but we stuck to

Updating the code base 221

the name \unexpanded. So, currently CoNTgXt’s \unexpanded is equivalent to
e-TgX's \protected. Furthermore, in CoNTEXT \expanded is not the same as the
e-TgX primitive. In order to use the primitives you need to use their \normal. ..
synonyms.) The \dosingleempty makes sure that one argument gets seen by
injecting a dummy when needed. At some point the \getparameters command
will store the values of keys in a namespace that is determined by \??my. The
namespace used here is actually one of the internal namespaces which can
be deduced from the double question marks. Module namespaces have four
question marks.

There is some magic involved in storing the values. For instance, keys are trans-
lated from the interface language into the internal language which happens to
be English. This translation is needed because a new command is generated:

\def\@amycolor{red}
\def\@amystyle{bold}

and such a command can be used internally because in so-called unprotected
mode @?! are valid in names. The Dutch equivalent is:

\mijnsetupcommando[kleur=rood, letter=vet]

and here the kleur has to be converted into color before the macro is con-
structed. Of course values themselves can stay as they are as long as checking
them uses the internal symbolic names that have the language specific mean-
ing.

\c!style{color}

\k!style{kleur}

\v'!bold {vet}

Internally assignments are done with the \c! variant, translation of the key is
done using the \k! alternative and values are prefixed by \v!.

It will be clear that for the English user interface no translation is needed and
as a result that interface is somewhat faster. There we only need

\c!style{color}
\v'!bold {bold}

Users never see these prefixed versions, unless they want to define an interna-
tionalized style, in which case the form

\mysetupcommand[\c!style=\v!bold]

222 Updating the code base

has to be used, as it will adapt itself to the user interface. This leaves the \??my
that in fact expands to \@emy. This is the namespace prefix.

Is this the whole story? Of course it isn’t, as in CoNTEXT we often have a
generic instance from which we can clone specific alternatives; in practice, the
\@@mycolor variant is used in a few cases only. In that case a setup command
can look like:

\mysetupcommand[myinstance] [style=bold]
And access to the parameters is done with:
\getvalue{\??my myinstance\c!color}

So far the description holds for MKII as well as MkIV, but in MKIV we are moving
to a variant of this. At the cost of a bit more runtime and helper macros, we
can get cleaner low-level code. The magic word here is commandhandler. At
some point the new MKIV code started using an extra abstraction layer, but the
code needed looked rather repetitive despite subtle differences. Then Wolfgang
suggested that we should wrap part of that functionality in a definition macro
that could be used to define module setup and definition code in one go, thereby
providing a level of abstraction that hides some nasty details. The main reason
why code could look cleaner is that the experimental core code provided a nicer
inheritance model for derived instances and Wolfgang’s letter module uses that
extensively. After doing some performance tests with the code we decided that
indeed such an initializer made sense. Of course, after that we played with it,
some more tricks were added, and eventually I decided to replace the similar
code in the core as well, that is: use the installer instead of defining helpers
locally.

So, how does one install a new setup mechanism? We stick to the core code
and leave modules aside for the moment.

\definesystemvariable{my}

\installcommandhandler \??my {whatever} \??my

After this command we have available some new helper commands of which
only a few are mentioned here (after all, this mechanism is still somewhat

experimental):

\setupwhatever[key=value]
\setupwhatever[instance] [key=value]

Updating the code base 223

Now a value is fetched using a helper:
\namedwhateverparameter{instance}{key}
However, more interesting is this one:
\whateverparameter{key}

For this to work, we need to set the instance:
\def\currentwhatever{instance}

Such a current state macro already was used in many places, so it fits into the
existing code quite well. In addition to \setupwhatever and friends, another
command becomes available:

\definewhatever[instance]
\definewhatever[instance] [key=value]

Again, this is not so much a revolution as we can define such a command easily
with helpers, but it pairs nicely with the setup command. One of the goodies
is that it provides the following feature for free:

\definewhatever[instance][otherinstance]
\definewhatever[instance] [otherinstance][key=value]

In some cases this creates more overhead than needed because not all com-
mands have instances. On the other hand, some commands that didn’t have
instances yet, now suddenly have them. For cases where this is not needed,
we provide simple variants of commandhandlers.

Additional commands can be hooked into a setup or definition so that for in-
stance the current situation can be updated or extra commands can be defined
for this instance, such as \start... and \stop... commands.

It should be stressed that the installer itself is not that special in the sense that

we could do without it, but it saves some coding. More important is that we no

longer have the @@ prefixed containers but use \whateverparameter commands

instead. This is definitely slower than the direct macro, but as we often deal

with instances, it’s not that much slower than \getvalue and critical compo-
nents are rather well speed-optimized anyway.

There is, however, a slowdown due to the way inheritance is implemented. That

224 Updating the code base

is how this started out: using a different (but mostly compatible) inheritance
model. In the MKII approach (which is okay in itself) inheritance happens by
letting values point to the parent value. In the new model we have a more
dynamic chain. It saves us macros but can expand quite wildly depending on
the depth of inheritance. For instance, in sectioning there can easily be five
or more levels of inheritance. So, there we get slower processing. The same
is true for \framed which is a rather critical command, but there it is nicely
compensated by less copying. My personal impression is that due to the way
ConTgXr is set up, the new mechanism is actually more efficient on an average
job. Also, because many constructs also depend on the \framed command,
that one can easily be part of the chain, which again speeds up a bit. In any
case, the new mechanisms use much less hash space.

Some mechanisms still look too complex, especially when they hook into others.
Multiple inheritance is not trivial to deal with, not only because the meaning
of keys can clash, but also because supporting it would demand quite complex
fully expandable resolvers. So for the moment we stay away from it. In case you
wonder why we cannot delegate more to Lua: it’s close to impossible to deal with
TiX’s grouping in efficient ways at the Lua end, and without grouping available
TiX becomes less useful.

Back to the namespace. We already had a special one for modules but after
many years of CoNTgXt development, we started to run out of two character
combinations and many of them had no relation to what name they spaced.
As the code base is being overhauled anyway, it makes sense to also provide
a new core namespace mechanism. Again, this is nothing revolutionary but it
reads much more nicely.

\installcorenamespace {whatever}

\installcommandhandler \??whatever {whatever} \??whatever

This time deep down no @@ is used, but rather something more obscure. In any
case, no one will use the meaning of the namespace variables, as all access
to parameters happens indirectly. And of course there is no speed penalty
involved; in fact, we are more efficient. One reason is that we often used the
prefix as follows:

\setvalue{\??my:option:bla}{foo}

and now we just say:

\installcorenamespace {whateveroption}

Updating the code base 225

\setvalue{\??whateveroption bla}{foo}

The commandhandler does such assignments slightly differently as it has to
prevent clashes between instances and keywords. A nice example of such a
clash is this:

\setvalue{\??whateveroption sectionnumber}{yes}

In sectioning we have instances named section, but we also have keys named
number and sectionnumber. So, we end up with something like this:

\setvalue{\??whateveroption section:sectionnumber}{yes}
\setvalue{\??whateveroption section:number}{yes}
\setvalue{\??whateveroption :number}{yes}

When I decided to replace code similar to that generated by the installer a new
rewrite stage was entered. Therefore one reason for explaining this here is
that in the process of adapting the core code instabilities are introduced and
as most users use the beta version of MkIV, some tolerance and flexibility is
needed and it might help to know why something suddenly fails.

In itself using the commandhandler is not that problematic, but wherever I
decide to use it, I also clean up the related code and that is where the typos
creep in. Fortunately Wolfgang keeps an eye on the changes so problems that
users report on the mailing lists are nailed down relatively fast. Anyway, the
rewrite itself is triggered by another event but that one is discussed in the next
section.

We don’t backport (low-level) improvements and speedups to MkII, because for
what we need TEX for, we consider PDFIEX and XiljX rather obsolete. Recent
tests show that at the moment of this writing a LuaTgX MKIV run is often faster
than a comparable pDFTEX MKII run (using utr-8 and complex font setups).
When compared to a X{IEX MKII run, a LuaTiEX MKIV run is often faster, but
it's hard to compare, as we have advanced functionality in MkIV that is not (or
differently) available in MKII.

23.3 Lexing

The editor that I use, called SciTE, has recently been extended with an extra
external lexer module that makes more advanced syntax highlighting possible,
using the Lua LPEG library. It is no secret that the user interface of CoNTEXT
is also determined by the way structure, definitions and setups can be high-

226 Updating the code base

34

lighted in an editor.>* When I changed to SciTE I made sure that we had proper
highlighting there.

At Pragma ADE one of the leading principles has always been: if the document
source looks bad, mistakes are more easily made and the rendering will also
be affected. Or phrased differently: if we cannot make the source look nice,
the content is probably not structured that well either. The same is true for
TiX source, although to a large extent there one must deal with the specific
properties of the language.

So, syntax highlighting, or more impressively: lexing, has always been part
of the development of ConTgXt and for instance the pretty printers of verba-
tim provide similar features. For a long time we assumed line-based lexing,
mostly for reasons of speed. And surprisingly, that works out quite well with
TiEX. We used a simple color scheme suitable for everyday usage, with not too
intrusive coloring. Of course we made sure that we had runtime spell checking
integrated, and that the different user interfaces were served well.

But then came the LPEG lexer. Suddenly we could do much more advanced
highlighting. Once I started playing with it, a new color scheme was set up
and more sophisticated lexing was applied. Just to mention a few properties:

e We distinguish between several classes of macro names: primitives, helpers,
interfacing, and user macros.

e In addition we highlight constant values and special registers differently.

e Conditional constructs can be recognized and are treated as in any regular
language (keep in mind that users can define their own).

e Embedded MetaPost code is lexed independently using a lexer that knows
the language’s primitives, helpers, user macros, constants and of course
specific syntax and drawing operators. Related commands at the TEX end
(for defining and processing graphics) are also dealt with.

e Embedded Lua is lexed independently using a lexer that not only deals with
the language but also knows a bit about how it is used in ConTgXt. Of
course the macros that trigger Lua code are handled.

e Metastructure and metadata related macros are colored in a fashion similar
to constants (after all, in a document one will not see any constants, so there
is no color clash).

e Some special and often invisible characters get a special background color
so that we can see when there are for instance non-breakable spaces sitting
there.

e Real-time spell checking is part of the deal and can optionally be turned

It all started with wdt, texedit and texwork, editors and environments written by myself in
MobuLa2 and later in PErRL Tk, but that was in a previous century.

Updating the code base 227

on. There we distinguish between unknown words, known but potentially
misspelled words, and known words.

Of course we also made lexers for MetaPost, Lua, xMmL, pPDF and text documents
so that we have a consistent look and feel.

When writing the new lexer code, and testing it on sources, I automatically
started adapting the source to the new lexing where possible. Actually, as
cleaning up code is somewhat boring, the new lexer is adding some fun to it.
I'm not so sure if I would have started a similar overhaul so easily otherwise,
especially because the rewrite now also includes speedup and cleanup. At least
it helps to recognize less desirable left-overs of MKII code.

23.4 Hiding

It is interesting to notice that users seldom define commands that clash with

low level commands. This is of course a side effect of the fact that one seldom

needs to define a command, but nevertheless. Low-level commands were pro-
tected by prefixing them by one or more (combinations of) do, re and no’s. This

habit is a direct effect of the early days of writing macros. For TgX it does not

matter how long a name is, as internally it becomes a pointer anyway, but mem-
ory consumption of editors, loading time of a format, string space and similar

factors determined the way one codes in TgX for quite a while. Nowadays there

are hardly any limits and the stress that CoNTgXT puts on the TgX engine is

even less than in MKII as we delegate many tasks to Lua. Memory comes cheap,
editors can deal with large amount of data (keep in mind that the larger the

file gets, the more lexing power can be needed), and screens are wide enough

not to lose part of long names in the edges.

Another development has been that in LuaTEX we have lots of registers so that
we no longer have to share temporary variables and such. The rewrite is a good
moment to get rid of that restriction.

This all means that at some point it was decided to start using longer command
names internally and permit in names. As [was never a fan of using @
for this, underscore made sense. We have been discussing the use of colons,
which is also nice, but has the disadvantage that colons are also used in the
source, for instance to create a sub-namespace. When we have replaced all old
namespaces, colons might show up in command names, so another renaming
roundup can happen.

One reason for mentioning this is that users get to see these names as part of
error messages. An example of a name is:

228 Updating the code base

\page layouts this or that

The first part of the name is the category of macros and in most cases is the
same as the first part of the filename. The second part is a namespace. The
rest of the name can differ but we're approaching some consistency in this.

In addition we have prefixed names, where prefixes are used as consistently as
possible:

token register

dimension register

skip register

muskip register

counter register, constant or conditional
(temporary) macro

(temporary) parameter expansion (value of key)
fractions

This is not that different from other prefixing in ConTEXt apart from the fact
that from now on those variables (registers) are no longer accessible in a regular
run. We might decide on another scheme but renaming can easily be scripted.
In the process some of the old prefixes are being removed. The main reason for
changing to this naming scheme is that it is more convenient to grep for them.

In the process most traditional \ifs get replaced by ‘conditionals’. The same
is true for \chardefs that store states; these become ‘constants’.

23.5 Status

We always try to keep the user interface constant, so most functionality and con-
trol stays stable. However, now that most users use MkIV, commands that no

longer make sense are removed. An interesting observation is that some users

report that low-level macros or registers are no longer accessible. Fortunately

that is no big deal as we point them to the official ways to deal with matters. It

is also a good opportunity for users to clean up accumulated hackery.

The systematic (file by file) cleanup started in the second half of 2011 and as
of January 2012 one third of the core (TgX) modules have to be cleaned up and
the planning is to get most of that done as soon as possible. However, some
modules will be rewritten (or replaced) and that takes more time. In any case
we hope that rather soon most of the code is stable enough that we can start
working on new mechanisms and features. Before that a cleanup of the Lua
code is planned.

Updating the code base 229

Although in many cases there are no fundamental changes in the user interface
and functionality, I will wrap up some issues that are currently being dealt with.
This is just a snapshot of what is happening currently and as a consequence
it describes what users can run into due to newly introduced bugs.

The core modules of CoNTEXT are loosely organized in groups. Over time there
has been some reorganization and in MkIV some code has been moved into
new categories. The alphabetical order does not reflect the loading order or
dependency tree as categories are loaded intermixed. Therefore the order below
is somewhat arbitrary and does not express importance. Each category has
multiple files.

anch: anchoring and positioning

More than a decade ago we started experimenting with position tracking. The
ability to store positional information and use that in a second pass permits
for instance adding backgrounds. As this code interacts nicely with (runtime)
MetaPost it has always been quite powerful and flexible on the one hand, but
at the same time it was demanding in terms of runtime and resources. How-
ever, were it not for this feature, we would probably not be using TEX at all,
as backgrounds and special relative positioning are needed in nearly all our
projects.

In MKIV this mechanism had already been ported to a hybrid form, but recently
much of the code has been overhauled and its MKkII artifacts stripped. As a
consequence the overhead in terms of memory probably has increased but the
impact on runtime has been considerably reduced. It will probably take some
time to become stable if only because the glue to MetaPost has changed. There
are some new goodies, like backgrounds behind parshapes, something that
probably no one uses and is always somewhat tricky but it was not too hard to
support. Also, local background support has been improved which means that
it's easier to get them in more column-based layouts, several table mechanisms,
floats and such. This was always possible but is now more automatic and
hopefully more intuitive.

attr: attributes

We use attributes (properties of nodes) a lot. The framework for this had been
laid early in MKIV development, so not much has changed here. Of course the
code gets cleaner and hopefully better as it is putting quite a load on the pro-
cessing. Each new feature depending on attributes adds some extra overhead
even if we make sure that mechanisms only kick in when they are used. This
is due to the fact that attributes are linked lists and although unique lists are
shared, they travel with each node. On the other hand, the cleanup (and de-

230 Updating the code base

MkII-ing) of code leads to better performance so on the average no user will
notice this.

back: backend code generation

This category wraps backend issues in an abstract way that is similar to the
special drivers in MKII. So far we have only three backends: pPDF, XML, and XHTML.
Such code is always in a state of maintenance, if only because backends evolve.

bibl: bibliographies

For a while now, bibliographies have not been an add-on but part of the core.
There are two variants: traditional BIBTgX support derived from a module by
Taco Hoekwater but using MkIV features (the module hooks into core code),
and a variant that delegates most work to Lua by creating an in-memory xML
tree that gets manipulated. At some point I will extend the second variant.
Going the xML route also connects better with developments such as Jean-
Michel Hufflen’s MIBIBTEX.

blob: typesetting in LUA

Currently we only ship a few helpers but eventually this will become a frame-
work for typesetting raw text in Lua. This might be handy for some projects that

we have where the only input is xmML, but I'm not that sure if it will produce nice

results and if the code will look better. On the other hand, there are some cases

where in a regular TgX run some basic typesetting in Lua might make sense.
Of course I also need an occasional pet project so this might qualify as one.

buff: buffers and verbatim

Traditionally buffers and verbatim have always been relatives as they share
code. The code was among the first to be adapted to LuaTgX. There is not that
much to gain in adapting it further. Maybe I will provide more lexers for pretty-
printing some day.

catc: catcodes

Catcodes are a rather TigX-specific feature and we have organized them in cat-
code regimes. The most important recent change has been that some of the
characters with a special meaning in TgX (like ampersand, underscore, super-
script, etc.) are no longer special except in cases that matter. This somewhat
incompatible change surprisingly didn’t lead to many problems. Some code
that is specific for the MkII xML processor has been removed as we no longer
assume it is in MkIV.

Updating the code base 231

char: characters

This important category deals with characters and their properties. Already
from the beginning of MKIV character properties have been (re)organized in
Lua tables and therefore much code deals with it. The code is rather stable but
occasionally the tables are updated as they depend on developments in Uni-
coDE. In order to share as much data as possible and prevent duplicates there
are several inheritance mechanisms in place but their overhead is negligible.

chem: chemistry

The external module that deals with typesetting chemistry was transformed
into a MKIV core module some time ago. Not much has changed in this depart-
ment but some enhancements are pending.

cldf: CONTEXT LUA documents

These modules are mostly Lua code and are the interface into CoNTgXT as well
as providing ways to code complete documents in Lua. This is one of those
categories that is visited every now and then to be adapted to improvements
in other core code or in LuaTEX. This is one of my favourite categories as it
exposes most of CoNTgXT at the Lua end which permits writing solutions in
Lua while still using the full power of CoNTgXTt. A dedicated manual is on its
way.

colo: colors and transparencies

This is rather old code, and apart from some cleanup not much has been
changed here. Some macros that were seldom used have been removed. One
issue that is still pending is a better interface to MetaPost as it has different
color models and we have adapted code at that end. This has a rather low
priority because in practice it is no real problem.

cont: runtime code

These modules contain code that is loaded at runtime, such as filename remap-
ping, patches, etc. It does not make much sense to improve these.

core: all kinds of core code
Housekeeping is the main target of these modules. There are still some typeset-
ting-related components here but these will move to other categories. This code

is cleaned up when there is a need for it. Think of managing files, document
project structure, module loading, environments, multipass data, etc.

232 Updating the code base

data: file and data management

This category hosts only Lua code and hasn’'t been touched for a while. Here
we deal with locating files, caching, accessing remote data, resources, environ-
ments, and the like.

enco: encodings

Because (font) encodings are gone, there is only one file in this category and
that one deals with weird (composed or otherwise special) symbols. It also pro-
vides a few traditional TEX macros that users expect to be present, for instance
to put accents over characters.

file: files

There is some overlap between this category and core modules. Loading files
is always somewhat special in TgX as there is the TgX directory structure to
deal with. Sometimes you want to use files in the so-called tree, but other
times you don’t. This category provides some management code for (selective)
loading of document files, modules and resources. Most of the code works with
accompanying Lua code and has not been touched for years, apart from some
weeding and low-level renaming. The project structure code has mostly been
moved to Lua and this mechanism is now more restrictive in the sense that one
cannot misuse products and components in unpredictable ways. This change
permits better automatic loading of cross references in related documents.

font: fonts

Without proper font support a macro package is rather useless. Of course
we do support the popular font formats but nowadays that’'s mostly delegated
to Lua code. What remains at the TgX end is code that loads and triggers a
combination of fonts efficiently. Of course in the process text and math each
need to get the proper amount of attention.

There is no longer shared code between MkII and MkIV. Both already had rather
different low-level solutions, but recently with MkIV we went a step further. Of
course it made sense to kick out commands that were only used for pPDFIEX
Typel and X5lizX OPENTYPE support but more important was the decision to
change the way design sizes are supported.

In CoNTgXT we have basic font definition and loading code and that hasn’'t
conceptually changed much over the years. In addition to that we have so-
called bodyfont environments and these have been made a bit more powerful
in recent MKIV. Then there are typefaces, which are abstract combinations

Updating the code base 233

of fonts and defining them happens in typescripts. This layered approach is
rather flexible, and was greatly needed when we had all those font encodings (to
be used in all kinds of combinations within one document). In MkIV, however,
we already had fewer typescripts as font encodings are gone (also for Typel
fonts). However, there remained a rather large blob of definition code dealing
with Latin Modern; large because it comes in design sizes.

As we always fall back on Latin Modern, and because we don’t preload fonts,
there is some overhead involved in resolving design size related issues and def-
initions. But, it happens that this is the only font that ships with many files
related to different design sizes. In practice no user will change the defaults. So,
although the regular font mechanism still provides flexible ways to define font
file combinations per bodyfont size, resolving to the right best matching size
now happens automatically via a so-called Lua font goodie file which brings
down the number of definitions considerably. The consequence is that Con-
TiXt starts up faster, not only in the case of Latin Modern being used, but also
when other designs are in play. The main reason for this is that we don’t have
to parse those large typescripts anymore, as the presets were always part of the
core set of typescripts. At the same time loading a specific predefined set has
been automated and optimized. Of course on a run of 30 seconds this is not
that noticeable, but it is on a 5 second run or when testing something in the
editor that takes less than a second. It also makes a difference in automated
workflows; for instance at PRacma ADE we run unattended typesetting flows
that need to run as fast as possible. Also, in virtual machines using network
shares, the fewer files consulted the better.

Because math support was already based on OPENTYPE, where CoNTgXT turns
Typel fonts into OPENTYPE at runtime, nothing fundamental has changed here,
apart from some speedups (at the cost of some extra memory). Where the
overhead of math font switching in MKkII is definitely a factor, in MkIV it is close
to negligible, even if we mix regular, bold, and bidirectional math, which we
have done for a while.

The low-level code has been simplified a bit further by making a better distinc-
tion between the larger sizes (a up to d) and smaller sizes (x and xx). These now

operate independently of each other (i.e. one can now have a smaller relative x

size of a larger one). This goes at the cost of more resources but it is worth the

effort.

By splitting up the large basic font module into smaller ones, I hope that it can
be maintained more easily although someone familiar with the older code will
only recognize bits and pieces. This is partly due to the fact that font code is
highly optimized.

234 Updating the code base

grph: graphic (and widget) inclusion

Graphics inclusion is always work in progress as new formats have to be dealt

with or users want additional conversions to be done. This code will be cleaned

up later this year. The plug-in mechanisms will be extended (examples of exist-
ing plug-ins are automatic converters and barcode generation).

hand: special font handling

As we treat protrusion and hz as features of a font, there is not much left in
this category apart from some fine-tuning. So, not much has happened here
and eventually the left-overs in this category might be merged with the font
modules.

java: JAVASCRIPT in PDF

This code already has been cleaned up a while ago, when moving to MkIV, but
we occasionally need to check and patch due to issues with JAvAScRIPT engines
in viewers.

lang: languages and labels

There is not much changed in this department, apart from additional labels.
The way inheritance works in languages differs too much from other inheri-
tance code so we keep what we have here. Label definitions have been moved
to Lua tables from which labels at the TgX end are defined that can then be
overloaded locally. Of course the basic interface has not changed as this is
typically code that users will use in styles.

luat: housekeeping

This is mostly Lua code needed to get the basic components and libraries in
place. While the data category implements the connection to the outside world,
this category runs on top of that and feeds the TgX machinery. For instance
conversion of MkVI files happens here. These files are seldom touched but
might need an update some time (read: prune obsolete code).

1pdf: PDF backend

Here we implement all kinds of ppr backend features. Most are abstracted
via the backend interface. So, for instance, colors are done with a high level
command that goes via the backend interface to the 1pdf code. In fact, there is
more such code than in (for instance) the MkII special drivers, but readability
comes at a price. This category is always work in progress as insights evolve

Updating the code base 235

and users demand more.
Ixml: XML and Ipath

As this category is used by some power users we cannot change too much here,
apart from speedups and extensions. It’s also the bit of code we use frequently
at PrRacma ADE, and as we often have to deal with rather crappy xmL I expect
to move some more helpers into the code. The latest greatest trickery related
to proper typesetting can be seen in the documents made by Thomas Schmitz.
I wonder if I'd still have fun doing our projects if I hadn’t, in an early stage of
MKIV, written the xML parser and expression parser used for filtering.

math: mathematics

Math deserves its own category but compared to MkII there is much less code,
thanks to UnicopE. Since we support Typel as virtual OpENTYPE nothing spe-
cial is needed there (and eventually there will be proper fonts anyway). When

rewriting code I try to stay away from hacks, which is sometimes possible by

using Lua but it comes with a slight speed penalty. Much of the UnNicobpE math-

related font code is already rather old but occasionally we add new features. For

instance, because OPENTYPE has no italic correction we provide an alternative

(mostly automated) solution.

On the agenda is more structural math encoding (maybe like openmath) but
tagging is already part of the code so we get a reasonable export. Not that
someone is waiting for it, but it’s there for those who want it. Most math-related
character properties are part of the character database which gets extended on
demand. Of course we keep MATHML up-to-date because we need it in a few
projects.

We're not in a hurry here but this is something where Aditya and I have to
redo some of the code that provides ams-like math commands (but as we have
them configurable some work is needed to keep compatibility). In the process
it’s interesting to run into probably never-used code, so we just remove those
artifacts.

meta: metapost interfacing
This and the next category deal with MetaPost. This first category is quite old
but already adapted to the new situation. Sometimes we add extra functionality

but the last few years the situation has become rather stable with the exception
of backgrounds, because these have been overhauled completely.

236 Updating the code base

mlib: metapost library

Apart from some obscure macros that provide the interface between front- and
backend this is mostly Lua code that controls the embedded MetaPost library.
So, here we deal with extensions (color, shading, images, text, etc.) as well as
runtime management because sometimes two runs are needed to get a graphic
right. Some time ago, the MklI-like extension interface was dropped in favor
of one more natural to the library and MetaPost 2. As this code is used on a
daily basis it is quite well debugged and the performance is pretty good too.

mult: multi-lingual user interface

Even if most users use the English user interface, we keep the other ones
around as they're part of the trademark. Commands, keys, constants, mes-
sages and the like are now managed with Lua tables. Also, some of the tricky
remapping code has been stripped because the setup definitions files are dealt
with. These are xML files that describe the user interface that get typeset and
shipped with CoNTgXT.

These files are being adapted. First of all the commandhandler code is defined
here. As we use a new namespace model now, most of these namespaces are
defined in the files where they are used. This is possible because they are
more verbose so conflicts are less likely (also, some checking is done to prevent
reuse). Originally the namespace prefixes were defined in this category but
eventually all that code will be gone. This is a typical example where 15-year-
old constraints are no longer an issue and better code can be used.

node: nodes

This is a somewhat strange category as all typeset material in TgX becomes
nodes so this deals with everything. One reason for this category is that new
functionality often starts here and is sometimes shared between several mech-
anisms. So, for the moment we keep this category. Think of special kerning,
insert management, low-level referencing (layer between user code and backend
code) and all kinds of rule and displacement features. Some of this functional-
ity is described in previously published documents.

norm: normalize primitives
We used to initialize the primitives here (because LuaTgX starts out blank). But

after moving that code this category only has one definition left and that one
will go too. In MKII these files are still used (and actually generated by MkIV).

Updating the code base 237

pack: wrapping content in packages

This is quite an important category as in ConTgXrT lots of things get packed. The

best example is \ framed and this macro has been maximally optimized, which

is not that trivial since much can be configured. The code has been adapted to

work well with the new commandhandler code and in future versions it might

use the commandhandler directly. This is however not that trivial because hook-
ing a setup of a command into \framed can conflict with the two commands

using keys for different matters.

Layers are also in this category and they probably will be further optimized.
Reimplementing reusable objects is on the horizon, but for that we need a
more abstract Lua interface, so that will come first. This has a low priority
because it all works well. This category also hosts some helpers for the page
builder but the builder itself has a separate category.

page: pages and output routines

Here we have an old category: output routines (trying to make a page), page
building, page imposition and shipout, single and multi column handling, very
special page construction, line numbering, and of course setting up pages and
layouts. All this code is being redone stepwise and stripped of old hacks. This
is a cumbersome process as these are core components where side effects are
sometimes hard to trace because mechanisms (and user demands) can inter-
fere. Expect some changes for the good here.

phys: physics

As we have a category for chemistry it made sense to have one for physics and
here is where the unit module’s code ended up. So, from now on units are
integrated into the core. We took the opportunity to rewrite most of it from
scratch, providing a bit more control.

prop: properties

The best-known property in TgX is a font and color is a close second. Both have
their own category of files. In MkII additional properties like backend layers and
special rendering of text were supported in this category but in MkIV properties
as a generic feature are gone and replaced by more specific implementations
in the attr namespace. We do issue a warning when any of the old methods
are used.

238 Updating the code base

regi: input encodings

We still support input encoding regimes but hardly any TgX code is involved
now. Only when users demand more functionality does this code get extended.
For instant, recently a user wanted a conversion function for going from uTr-8
to an encoding that another program wanted to see.

scrn: interactivity and widgets

All modules in this category have been overhauled. On the one hand we lifted

some constraints, for instance the delayed initialization of fields no longer

makes sense as we have a more dynamic variable resolver now (which is some-
what slower but still acceptable). On the other hand some nice but hard to

maintain features have been simplified (not that anyone will notice as they

were rather special). The reason for this is that vaguely documented pDF fea-
tures tend to change over time which does not help portability. Of course there

have also been some extensions, and it is actually less hassle (but still no fun)

to deal with such messy backend related code in Lua.

scrp: script-specific tweaks

These are script-specific Lua files that help with getting better results for scripts
like cgg. Occasionally I look at them but how they evolve depends on usage. I
have some very experimental files that are not in the distribution.

sort: sorting

As sorting is delegated to Lua there is not much TgX code here. The Lua code
occasionally gets improved if only because users have demands. For instance,
sorting Korean was an interesting exercise, as was dealing with multiple lan-
guages in one index. Because sorting can happen on a combination of UNICODE,
case, shape, components, etc. the sorting mechanism is one of the more com-
plex subsystems.

spac: spacing

This important set of modules is responsible for vertical spacing, strut man-
agement, justification, grid snapping, and all else that relates to spacing and
alignments. Already in an early stage vertical spacing was mostly delegated to
Lua so there we're only talking of cleaning up now. Although ... I'm still not
satisfied with the vertical spacing solution because it is somewhat demanding
and an awkward mix of TgX and Lua which is mostly due to the fact that we
cannot evaluate TgX code in Lua.

Updating the code base 239

Horizontal spacing can be quite demanding when it comes down to configura-
tion: think of a table with 1000 cells where each cell has to be set up (justifica-
tion, tolerance, spacing, protrusion, etc.). Recently a more drastic optimization
has been done which permits even more options but at the same time is much
more efficient, although not in terms of memory.

Other code, for instance spread-related status information, special spacing
characters, interline spacing and linewise typesetting all falls into this cate-
gory and there is probably room for improvement there. It's good to mention
that in the process of the current cleanup hardly any Lua code gets touched,
so that’'s another effort.

strc: structure

Big things happened here but mostly at the TiEgX end as the support code in
Lua was already in place. In this category we collect all code that gets or can
get numbered, moves around and provides visual structure. So, here we find
itemize, descriptions, notes, sectioning, marks, block moves, etc. This means
that the code here interacts with nearly all other mechanisms.

Itemization now uses the new inheritance code instead of its own specific mech-
anism but that is not a fundamental change. More important is that code has
been moved around, stripped, and slightly extended. For instance, we had
introduced proper \startitem and \stopitem commands which are somewhat
conflicting with \item where a next instance ends a previous one. The code
is still not nice, partly due to the number of options. The code is a bit more
efficient now but functionally the same.

The sectioning code is under reconstruction as is the code that builds lists.
The intention is to have a better pluggable model and so far it looks promising.
As similar models will be used elsewhere we need to converge to an acceptable
compromise. One thing is clear: users no longer need to deal with arguments
but variables and no longer with macros but with setups. Of course providing
backward compatibility is a bit of a pain here.

The code that deals with descriptions, enumerations and notes was already
done in a MkIV way, which means that they run on top of lists as storage and
use the generic numbering mechanism. However, they had their own inheri-
tance support code and moving to the generic code was a good reason to look
at them again. So, now we have a new hierarchy: constructs, descriptions,
enumerations and notations where notations are hooked into the (foot)note
mechanisms.

These mechanisms share the rendering code but operate independently (which

240 Updating the code base

was the main challenge). I did explore the possibility of combining the code
with lists as there are some similarities but the usual rendering is too different
as in the interface (think of enumerations with optional local titles, multiple
notes that get broken over pages, etc.). However, as they are also stored in lists,
users can treat them as such and reuse the information when needed (which
for instance is just an alternative way to deal with end notes).

At some point math formula numbering (which runs on top of enumerations)
might get its own construct base. Math will be revised when we consider the
time to be ripe for it anyway.

The reference mechanism is largely untouched as it was already doing well, but
better support has been added for automatic cross-document referencing. For
instance it is now easier to process components that make up a product and
still get the right numbering and cross referencing in such an instance.

Float numbering, placement and delaying can all differ per output routine (sin-
gle column, multi-column, columnset, etc.). Some of the management has
moved to Lua but most is just a job for TigX. The better some support mecha-
nisms become, the less code we need here.

Registers will get the same treatment as lists: even more user control than is al-
ready possible. Being a simple module this is a relatively easy task, something

for a hot summer day. General numbering is already fine as are block moves

so they come last. The xML export and ppF tagging is also controlled from this

category.

supp: support code

Support modules are similar to system ones (discussed later) but on a slightly
more abstract level. There are not that many left now so these might as well
become system modules at some time. The most important one is the one deal-
ing with boxes. The biggest change there is that we use more private registers.
I'm still not sure what to do with the visual debugger code. The math-related
code might move to the math category.

symb: symbols

The symbol mechanisms organizes special characters in groups. With Uni-
copE-related fonts becoming more complete we hardly need this mechanism.
However, it is still the abstraction used in converters (for instance footnote
symbols and interactive elements). The code has been cleaned up a bit but
generally stays as is.

Updating the code base 241

syst: tex system level code

Here you find all kinds of low-level helpers. Most date from early times but have
been improved stepwise. We tend to remove obscure helpers (unless someone
complains loudly) and add new ones every now and then. Even if we would
strip down CoNTEXr to a minimum size, these modules would still be there. Of
course the bootstrap code is also in this category: think of allocators, prede-
fined constants and such.

tabl: tables

The oldest table mechanism was a quite seriously patched version of Tp\B[E and
finally the decision has been made to strip, replace and clean up that bit. So,
we have less code, but more features, such as colored columns and more.

The (in-stream) tabulate code is mostly unchanged but has been optimized
(again) as it is often used. The multipass approach stayed but is somewhat
more efficient now.

The natural table code was originally meant for xmML processing but is quite
popular among users. The functionality and code is frozen but benefits from
optimizations in other areas. The reason for the freeze is that it is pretty com-
plex multipass code and we don’t want to break anything.

As an experiment, a variant of natural tables was made. Natural tables have a
powerful inheritance model where rows and cells (first, last, ...) can be set up
as a group but that is rather costly in terms of runtime. The new table variant
treats each column, row and cell as an instance of \framed where cells can
be grouped arbitrarily. And, because that is somewhat extreme, these tables
are called x-tables. As much of the logic has been implemented in Lua and
as these tables use buffers (for storing the main body) one could imagine that
there is some penalty involved in going between TgX and Lua several times, as
we have a two, three or four pass mechanism. However, this mechanism is
surprisingly fast compared to natural tables. The reason for writing it was not
only speed, but also the fact that in a project we had tables of 50 pages with
lots of spans and such that simply didn’t fit into TigX's memory any more, took
ages to process, and could also confuse the float splitter.

Line tables ... well, I will look into them when needed. They are nice in a
special way, as they can split vertically and horizontally, but they are seldom
used. (This table mechanism was written for a project where large quantities
of statistical data had to be presented.)

242 Updating the code base

task: lua tasks

Currently this is mostly a place where we collect all kinds of tasks that are
delegated to Lua, often hooked into callbacks. No user sees this code.

toks: token lists

This category has some helpers that are handy for tracing or manuals but no
sane user will ever use them, I expect. However, at some point I will clean up
this old MkIV mess. This code might end up in a module outside the core.

trac: tracing

A lot of tracing is possible in the Lua code, which can be controlled from the
TEX end using generic enable and disable commands. At the macro level we
do have some tracing but this will be replaced by a similar mechanism. This
means that many \tracewhatevertrue directives will go away and be replaced.
This is of course introducing some incompatibility but normally users don’t
use this in styles.

type: typescripts

We already mentioned that typescripts relate to fonts. Traditionally this is a
layer on top of font definitions and we keep it this way. In this category there
are also the definitions of typefaces: combinations of fonts. As we split the
larger into smaller ones, there are many more files now. This has the added
benefit that we use less memory as typescripts are loaded only once and stored
permanently.

typo: typesetting and typography

This category is rather large in MkIV as we move all code into here that some-
how deals with special typesetting. Here we find all kinds of interesting new
code that uses Lua solutions (slower but more robust). Much has been dis-
cussed in articles as they are nice examples and often these are rather stable.

The most important new kid on the block is margin data, which has been
moved into this category. The new mechanism is somewhat more powerful
but the code is also quite complex and still experimental. The functionality is
roughly the same as in MkII and older MkIV, but there is now more advanced in-
heritance, a clear separation between placement and rendering, slightly more
robust stacking, local anchoring (new). It was a nice challenge but took a bit
more time than other reimplementations due to all kinds of possible interfer-
ence. Also, it's not always easy to simulate TgX grouping in a script language.

Updating the code base 243

Even if much more code is involved, it looks like the new implementation is
somewhat faster. I expect to clean up this code a couple of times.

On the agenda is not only further cleanup of all modules in this category, but
also more advanced control over paragraph building. There is a parbuilder
written in Lua on my machine for years already which we use for experiments
and in the process a more LuaTgX-ish (and efficient) way of dealing with protru-
sion has been explored. But for this to become effective, some of the LuaTgX
backend code has to be reorganized and Hartmut wants do that first. In fact,
we can then backport the new approach to the built-in builder, which is not
only faster but also more efficient in terms of memory usage.

unic: UNICODE vectors and helpers

As UnicoDE support is now native all the MKkII code (mostly vectors and convert-
ers) is gone. Only a few helpers remain and even these might go away. Consider
this category obsolete and replaced by the char category.

util: utility functions

These are Lua files that are rather stable. Think of parsers, format generation,
debugging, dimension helpers, etc. Like the data category, this one is loaded
quite early.

Other TgX files

Currently there are the above categories which can be recognized by filename
and prefix in macro names. But there are more files involved. For instance,
user extensions can go into these categories as well but they need names start-
ing with something like xxxx-imp- with xxxx being the category.

Then there are modules that can be recognized by their prefix: m- (basic mod-
ule), t- (third party module), x- (xmL-specific module), u- (user module), p- (pri-
vate module). Some modules that Wolfgang and Aditya are working on might
end up in the core distribution. In a similar fashion some seldom used core
code might get moved to (auto-loaded) modules.

There are currently many modules that provide tracing for mechanisms (like
font and math) and these need to be normalized into a consistent interface.
Often such modules show up when we work on an aspect of CoNTEXT or LuaTgX
and at that moment integration is not high on the agenda.

244 Updating the code base

MetaPost files

A rather fundamental change in MetaPost is that it no longer has a format
(mem file). Maybe at some point it will read .gz files, but all code is loaded at
runtime.

For this reason I decided to split the files for MkII and MkKIV as having version
specific code in a common set no longer makes much sense. This means that
already for a while we have .mpii and .mpiv files with the latter category being
more efficient because we delegate some backend-related issues to CoNTEXT
directly. I might split up the files for MkIV a bit more so that selective loading
is easier. This gives a slight performance boost when working over a network
connection.

LUA files

There are some generic helper modules, with names starting with 1-. Then
there are the mtx-* scripts for all kinds of management tasks with the most
important one being mtx-context for managing a TgX run.

Generic files

This leaves the bunch of generic files that provides OrPENTYPE support to pack-
ages other than ConNTgXT. Much time went into moving CoNTgXT-specific code
out of the way and providing a better abstract interface. This means that new
CoNTgXT code (we provide more font magic) will be less likely to interfere and
integration is easier. Of course there is a penalty for ConTgXt but it is bearable.
And yes, providing generic code takes quite a lot of time so I sometimes wonder
why I did it in the first place, but currently the maintenance burden is rather
low. Khaled Hosny is responsible for bridging this code to IXTiEX.

23.6 What next

Here ends this summary of the current state of CoNTEXT. I expect to spend the
rest of the year on further cleaning up. I'm close to halfway now. What I really
like is that many users upgrade as soon as there is a new beta, and as in a
rewrite typos creep in, I therefore often get a fast response.

Of course it helps a lot that Wolfgang Schuster, Aditya Mahajan, and Luigi
Scarso know the code so well that patches show up on the list shortly after a
problem gets reported. Also, for instance Thomas Schmitz uses the latest betas
in academic book production, presentations, lecture notes and more, and so
provides invaluable fast feedback. And of course Mojca Miklavec keeps all of it

Updating the code base 245

(and us) in sync. Such a drastic cleanup could not be done without their help.
So let’s end this status report with ... a big thank you to all those (unnamed)
patient users and contributors.

246 Updating the code base

35

24 Just in time

24.1 Introduction

Reading occasional announcements about LuaJIT,?® one starts wondering if
just—in—time compilation can speed up LuaATgX. As a side track of the SwicLiB
project and after some discussion, Luigi Scarso decided to compile a version of
LuaTEX that had the Jir compiler as the Lua engine. That's when our journey
into JiT began.

We started with Linux 32-bit as this is what Luigi used at that time. Some
quick first tests indicated that the LuaJIT compiler made CoNTgXT MKIV run
faster but not that much. Because LuaJIT claims to be much faster than stock
Lua, Luigi then played a bit with ffi, i.e. mixing C and Lua, especially data
structures. There is indeed quite some speed to gain here; unfortunately, we
would have to mess up the CoNTEXT code base so much that one might wonder
why Lua was used in the first place. I could confirm these observations in a
Xubuntu virtual machine in VMWARE running under 32-bit Windows 8. So, we
decided to conduct some more experiments.

A next step was to create a 64-bit binary because the servers at PrRacma ADE
are kvMm virtual machines running a 64-bit OpenSuse 12.1 and 12.2. It took a
bit of effort to get a JiT version compiled because Luigi didn’'t want to mess up
the regular codebase too much. This time we observed a speedup of about 40%
on some runs so we decided to move on to Winnows to see if we could observe
a similar effect there. And indeed, when we adapted Akira Kakuto’s WiNpDows
setup a bit we could compile a version for WinpDows using the native MiICROSOFT
compiler. On my laptop a similar speedup was observed, although by then we
saw that in practice a 25% speedup was about what we could expect. A bonus
is that making formats and identifying fonts is also faster.

So, in that stage, we could safely conclude that LuaTEX combined with LuaJIT
made sense if you want a somewhat faster version. But where does the speedup
come from? The easiest way to see if jitting has effect is to turn it on and off.

jit.on()
jit.off()

To our surprise CoNTgXT runs are not much influenced by turning the jitter on
or off.36 This means that the improvement comes from other places:

LuaJIT is written by Mike Pall and more information about it and the technology it uses is at
http://luajit.org, a site also worth visiting for its clean design.

Just in time 247

36

37

1. The virtual machine is a different one, and targets the platforms that it runs
on. This means that regular bytecode also runs faster.

2. The garbage collector is the one from Lua 5.2, so that can make a difference.
It looks like memory consumption is somewhat lower.

3. Some standard library functions are recognized and supported in a more
efficient way. Think of math.sin.

4. Some built-in functions like type are probably dealt with in a more efficient
way.

The third item is an important one. We don’t use that many standard functions.
For instance, if we need to go from characters to bytes and vice versa, we have
to do that for utr so we use some dedicated functions or LPEG. If in CoNTEXT
we parse strings, we often use LPEG instead of string functions anyway. And if
we still do use string functions, for instance when dealing with simple strings,
it only happens a few times.

The more demanding CoNTgXT code deals with node lists, which means fre-
quent calls to core LuaTgX functions. Alas, jitting doesn’t help much there
unless we start messing with ffi which is not on the agenda.3”

24.2 Benchmarks

Let’s look at some of the benchmarks. The first one uses MetaPost and because
we want to see if calculations are faster, we draw a path with a special pen so
that some transformations have to be done in the code that generates the ppr
output. We only show the MS Winpows and 64-bit LiNux tests here. The 32-bit
tests are consistent with those on MS Winpows so we didn’t add those timings
here (also because in the meantime Luigi’s machine broke down and he moved
on to 64 bits).

\setupbodyfont[dejavu]
\starttext
\dontcomplain

\startluacode
if jit then

We also tweaked some of the fine-tuning parameters of LuaJIT but didn’t notice any differences.
In due time more tests will be done.

If we want to improve these mechanisms it makes much more sense to make more helpers.
However, profiling has shown us that the most demanding code is already quite optimized.

248 Just in time

jit.on()
jit.off()
end
\stopluacode

\startluacode
statistics.starttiming()
\stopluacode

\dorecurse {10} {
\dorecurse{1000} {
\dontleavehmode
\startMPcode
for i=1,100 :
draw

fullcircle scaled 10pt
withpen pencircle xscaled 2 yscaled 4 rotated 20 ;

endfor ;
\stopMPcode
\enspace
}
\page

}

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())

\stopluacode

\stoptext

The following times are measured in seconds. They are averages of 5 runs.
There is a significant speedup but jitting doesn’t do much.

traditional Jrr on Jrr off

Windows 8 26.0 20.6 20.8
Linux 64 342 149 14.1

Our second example uses multiple fonts in a paragraph and adds color as well.
Although well optimized, font—related code involves node list parsing and a bit
of calculation. Color again deals with node lists and the backend code involves
calculations but not that many. The traditional run on LINUX is somewhat odd,
but might have to do with the fact that the MetaPost library suffers from the

Just in time 249

64 bits. It is at least an indication that optimizations make less sense if there
is a different dominant weak spot. We have to look into this some time.

\setupbodyfont[dejavu]
\starttext
\dontcomplain

\startluacode
if jit then
jit.on()
jit.off()
end
\stopluacode

\startluacode
statistics.starttiming()
\stopluacode

\dorecurse {1000} {
{\bf \red \input tufte } \blank
{\it \green \input tufte } \blank
{\tf \blue \input tufte } \page

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())
\stopluacode

\stoptext

Again jitting has no real benefits here, but the overall gain in speed is quite
nice. It could be that the garbage collector plays a role here.

traditional Jrron Jrr off

Windows 8 54.6 36.0 35.9
Linux 64 46.5 32.0 31.7

This benchmark writes quite a lot of data to the console, which can have impact
on performance as TgX flushes on a per—character basis. When one runs TgX
as a service this has less impact because in that case the output goes into the

250 Just in time

38

void. There is a lot of file reading going on here, but normally the operating
system will cache data, so after a first run this effect disappears.3®

The third benchmark is one that we often use for testing regression in speed of
the CoNTgXTt core code. It measures the overhead in the page builder without
special tricks being used, like backgrounds. The document has some 1000

pages.
\setupbodyfont[dejavu]
\starttext
\dontcomplain

\startluacode
if jit then
jit.on()
jit.off()
end
\stopluacode

\startluacode
statistics.starttiming()
\stopluacode

\dorecurse {1000} {
test \page

\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())
\stopluacode

\stoptext

These numbers are already quite okay for the normal version but the speedup
of the LuaJIT version is consistent with the expectations we have by now.

traditional Jrron Jrr off

On MS Winpows it makes sense to use console2 because due to some clever buffering tricks
it has a much better performance than the default console.

Just in time 251

Windows 8 4.5 3.6 3.6
Linux 64 4.8 3.9 4.0

The fourth benchmark uses some structuring, which involved Lua tables and
housekeeping, an itemize, which involves numbering and conversions, and a
table mechanism that uses more Lua than TgX.

\setupbodyfont[dejavu]
\starttext
\dontcomplain

\startluacode
if jit then
jit.on()
jit.off()
end
\stopluacode

\startluacode
statistics.starttiming()
\stopluacode

\startbuffer
\margintext{test} test test

\startitemize[a]
\startitem test \stopitem
\startitem test \stopitem
\startitem test \stopitem
\startitem test \stopitem
\stopitemize

\startxtable

\startxrow
\startxcell test \stopxcell
\startxcell test \stopxcell
\startxcell test \stopxcell

\stopxrow

\startxrow
\startxcell test \stopxcell
\startxcell test \stopxcell

252 Just in time

\startxcell test \stopxcell
\stopxrow
\stopxtable
\stopbuffer

\dorecurse {25} {
\startchapter[title=Test #1]
\dorecurse {25} {
\startsection[title=Test #1]
\getbuffer
\stopsection

}
\stopchapter

\page
\startluacode
statistics.stoptiming()
context(statistics.elapsedtime())
\stopluacode

\stoptext

Here it looks like JiT slows down the process, but of course we shouldn’t take
the last digit too seriously.

traditional Jrr on Jrr off

Windows 8 20.9 16.8 16.5
Linux 64 20.4 16.0 16.1

Again, this example does a bit of logging, but not that much reading from file
as buffers are kept in memory:.

We should start wondering when Jit does kick in. This is what the fifth bench-
mark does.

\starttext
\startluacode
if jit then

jit.on()

Just in time 253

jit.off()
end

local t os.clock()

local a = 0

for i=1,10*1000*1000 do
a = a + math.sin(1i)

end

context(os.clock()-t)

context.par()

local t = os.clock()

local sin = math.sin

local a = 0

for i=1,10*1000*1000 do
a =a + sin(i)

end

context(os.clock()-t)

\stopluacode

\stoptext

Here we see J1T having an effect! First of all the LuaJIT versions are now 4 times
faster. Making the sin a local function (the numbers after /) does not make

much of a difference because the math functions are optimized anyway.. See
how we're still faster when Jrt is disabled:

traditional JIT on Jrr off

Windows 8 1.97 /1.54 0.46/0.45 0.73/ 0.61
Linux 64 1.62 /127 0.41/0.42 0.67 / 0.52

Unfortunately this kind of calculation (in these amounts) doesn’t happen that
often but maybe some users can benefit.

24.3 Conclusions

So, does it make sense to complicate the LuaTgX build with LuaJIT? It does
when speed matters, for instance when CoNTgXT is run as a service. Some
25% gain in speed means less waiting time, better use of cpu cycles, less energy
consumption, etc. On the other hand, computers are still becoming faster and

254 Just in time

compared to those speed-ups the 25% is not that much. Also, as TgX deals with
files, the advance of ssp disks and larger and faster memory helps too. Faster
and larger cpu caches contributes too. On the other hand, multiple cores don’t
help that much on a system that only runs TgX. Interesting is that multi-core
architectures tend to run at slower speeds than single cores where more heat
can be dissipated and in that respect servers mostly running TgX are better
off with fewer cores that can run at higher frequencies. But anyhow, 25% is
still better than nothing and it makes my old laptop feel faster. It prolongs the
lifetime of machines!

Now, say that we cannot speed up TgX itself that much, but that there is still
something to gain at the Lua end — what can we reasonably expect? First of
all we need to take into account that only part of the runtime is due to Lua.
Say that this is 25% for a document of average complexity.

runtime;ey + runtimey,;; = 100

We can consider the time needed by TigX to be constant; so if that is 75% of the
total time (say 100 seconds) to begin with, we have:

75 + runtimep,, = 100

It will be clear that if we bring down the runtime to 80% (80 seconds) of the
original we end up with:

75 + runtimej,;, = 80

And the 25 seconds spent in Lua went down to 5, meaning that Lua processing
got 5 times faster! It is also clear that getting much more out of Lua becomes
hard. Of course we can squeeze more out of it, but TgX still needs its time. It
is hard to measure how much time is actually spent in Lua. We do keep track
of some times but it is not that accurate. These experiments and the gain in
speed indicate that we probably spend more time in Lua than we first guessed.
If you look in the CoNTgXT source it's not that hard to imagine that indeed we
might well spend 50% or more of our time in Lua and/or in transferring control
between TgX and Lua. So, in the end there still might be something to gain.

Let’s take benchmark 4 as an example. At some point we measured for a regular
LuaTEX 0.74 run 27.0 seconds and for a LuaditfTgX run 23.3 seconds. If we
assume that the LuaJIT virtual machine is twice as fast as the normal one,
some juggling with numbers makes us conclude that TgX takes some 19.6
seconds of this. An interesting border case is \directlua: we sometimes pass
quite a lot of data and that gets tokenized first (a TgX activity) and the resulting
token list is converted into a string (also a TgX activity) and then converted to

Just in time 255

bytecode (a Lua task) and when okay executed by Lua. The time involved in
conversion to byte code is probably the same for stock Lua and LuaJIT.

In the LuaTEX case, 30% of the runtime for benchmark 4 is on Lua’s tab, and
in LuadgitTgX it's 15%. We can try to bring down the Lua part even more, but it
makes more sense to gain something at the TgX end. There macro expansion
can be improved (read: CoNTEXT core code) but that is already rather optimized.

Just for the sake of completeness Luigi compiled a stock LuaTgX binary for
64-bit Linux with the -03 option (which forces more inlining of functions as
well as a different switch mechanism). We did a few tests and this is the result:

LUuATEX 0.74 -02 LuaATgX 0.74 - 03

benchmark-1 15.5 15.0
benchmark-2 35.8 34.0
benchmark-3 4.0 3.9
benchmark-4 16.0 15.8

This time we used - -batch and - -silent to eliminate terminal output. So, if you
really want to squeeze out the maximum performance you need to compile with
-03, use LuagirTgX (with the faster virtual machine) but disable Jit (disabled
by default anyway).

We have no reason to abandon stock Lua. Also, because during these experi
ments we were still using Lua 5.1 we started wondering what the move to 5.2
would bring. Such a move forward also means that CoNTgXt MkKIV will not
depend on specific LuaJIT features, although it is aware of it (this is needed be-
cause we store bytecodes). But we will definitely explore the possibilities and

see where we can benefit. In that respect there will be a way to enable and

disable jitting. So, users have the choice to use either stock LUATEX or the Jir—

aware version but we default to the regular binary.

As we use stock Lua as benchmark, we will use the bit32 library, while LuaJIT
has its own bit library. Some functions can be aliased so that is no big deal.
In ConNTgXT we use wrappers anyway. More problematic is that we want to
move on to Lua 5.2 and not all 5.2 features are supported (yet) in LuaJIT. So, if
LuaJIT is mandatory in a workflow, then users had better make sure that the
Lua code is compatible. We don’t expect too many problems in CoNTEXtT MKIV.

24.4 About speed

It is worth mentioning that the Lua version in LuaTigX has a patch for converting

256 Just in time

floats into strings. Instead of some INF# result we just return zero, simply
because TgX is integer—based and intercepting incredibly small numbers is too
cumbersome. We had to apply the same patch in the JiT version.

The benchmarks only indicate a trend. In a real document much more happens
than in the above tests. So what are measurements worth? Say that we compile
the TigXbook. This grandparent of all documents coded in TgX is rather plainly
coded (using of course plain TgX) and compiles pretty fast. Processing does not
suffer from complex expansions, there is no color, hardly any text manipulation,
it’s all 8 bit, the pagebuilder is straightforward as is all spacing. Although on
my old machine I can get CoNTEXT to run at over 200 pages per second, this
quickly drops to 10% of that speed when we add some color, backgrounds,
headers and footers, font switches, etc.

So, running documents like the TgXbook for comparing the speed of, say, PDFTEX,
XAlEX, LuaTgX and now LuaditTgX makes no sense. The first one is still eight bit,
the rest are UnicobpE. Also, the TigXbook uses traditional fonts with traditional
features so effectively that it doesn’t rely on anything that the new engines
provide, not even e-TgX extensions. On the other hand, a recent document
uses advanced fonts, properties like color and/or transparencies, hyperlinks,
backgrounds, complex cover pages or chapter openings, embeds graphics, etc.
Such a document might not even process in PDFIEX or X{IEX, and if it does, it’s
still comparing different technologies: eight bit input and fast fonts in PDFIEX,
frozen UnicobpE and wide font support in XX, instead of additional trickery
and control, written in Lua. So, when we investigate speed, we need to take into
account what (font and input) technologies are used as well as what complicat-
ing layout and rendering features play a role. In practice speed only matters
in an edit-view cycle and services where users wait for some result.

It's rather hard to find a recent document that can be used to compare these en-
gines. The best we could come up with was the rendering of the user interface
documentation.

texexec --engine=pdftex --global x-set-12.mkii 5.9 seconds
texexec --engine=xetex --global x-set-12.mkii 6.2 seconds
context --engine=luatex --global x-set-12.mkiv 6.2 seconds
context --engine=luajittex --global x-set-12.mkiv 4.6 seconds

Keep in mind that texexec is a RuBy script and uses kpsewhich while context
uses Lua and its own (Tbs—compatible) file manager. But still, it is interesting to
see that there is not that much difference if we keep Jrt out of the picture. This
is because in MKIV we have somewhat more clever XML processing, although ear-
lier measurements have demonstrated that in this case not that much speedup
can be assigned to that.

Just in time 257

And so recent versions of MKIV already keep up rather well with the older
eight bit world. We do way more in MkIV and the interfacing macros are nicer
but potentially somewhat slower. Some mechanisms might be more efficient
because of using Lua, but some actually have more overhead because we keep
track of more data. Font feature processing is done in Lua, but somehow can
keep up with the libraries used in X5{IEX, or at least is not that significant a
difference, although I can think of more demanding tasks. Of course in LuaATgX
we can go beyond what libraries provide.

No matter what one takes into account, performance is not that much worse in
LuaTgX, and if we enable gir and so remove some of the traditional Lua virtual
machine overhead, we're even better off. Of course we need to add a disclaimer
here: don’t force us to prove that the relative speed ratios are the same for
all cases. In fact, it being so hard to measure and compare, performance can
be considered to be something taken for granted as there is not that much
we can do about getting nicer numbers, apart from maybe parallelizing which
brings other complexities into the picture. On our servers, a few other virtual
machines running TgX services kicking in at the same time, using cpu cycles,
network bandwidth (as all data lives someplace else) and asking for disk access
have much more impact than the 25% we gain. Of course if all processes run
faster then we've gained something.

For what it's worth: processing this text takes some 2.3 seconds on my lap-
top for regular LuaTgX and 1.8 seconds with LuaJitTigX, including the extra
overhead of restarting. As this is a rather average example it fits earlier mea-
surements.

Processing a font manual (work in progress) takes LuaJiTIgX 15 seconds for
112 pages compared to 18.4 seconds for LuaTgX. The not yet finished manual
loads 20 different fonts (each with multiple instances), uses colors, has some
MetaPost graphics and does some font juggling. The gain in speed sounds
familiar.

24.5 The future

At the 2012 Lua conference Roberto lerusalimschy mentioned that the virtual
machine of LuaJIT is about twice as fast due to it being partly done in assembler
while the regular machinery is written in standard C and keeps portability in
mind.

He also presented some plans for future versions of Lua. There will be some

lightweight helpers for utr. Our experiences so far are that only a handful of
functions are actually needed: byte to character conversions and vice versa,

258 Just in time

iterators for utr characters and utr values and maybe a simple substring func-
tion is probably enough. Currently LuATEX has some extra string iterators and
it will provide the converters as well.

There is a good chance that LpEG will become a standard library (which it al-
ready is in LuaTgX), which is also nice. It’s interesting that, especially on longer
sequences, LPEG can beat the string matchers and replacers, although when
in a substitution no match and therefore no replacements happen, the regular
gsub wins. We're talking small numbers here, in daily usage LPEG is about as
efficient as you can wish. In ConTEXT we have a lpeg.UR and 1lpeg.US and it
would be nice to have these as native utr related methods, but I must admit
that I seldom need them.

This and other extensions coming to the language also have some impact on a
Jit version: the current LuaJIT is already not entirely compatible with Lua 5.2
so you need to keep that into account if you want to use this version of LuaTgX.
So, unless LuaJIT follows the mainstream development, as CoNTgXT MKIV user
you should not depend on it. But at the moment it’s nice to have this choice.

The yet experimental code will end up in the main LuaTgX repository in time

before the TgX Live 2013 code freeze. In order to make it easier to run both

versions alongside, we have added the Lua 5.2 built-in library bit32 to Lua-
JITTEX. We found out that it's too much trouble to add that library to Lua 5.1

but LuaTgX has moved on to 5.2 anyway.

24.6 Running

So, as we will definitely stick to stock Lua, one might wonder if it makes sense
to officially support jitting in ConTgXt. First of all, LuaTgX is not influenced
that much by the low level changes in the apri between 5.1 and 5.2. Also LuaJIT
does support the most important new 5.2 features, so at the moment we're
mostly okay. We expect that eventually LuaJIT will catch up but if not, we are
not in big trouble: the performance of stock Lua is quite okay and above all, it’'s
portable!3® For the moment you can consider LuaJitTigX to be an experiment
and research tool, but we will do our best to keep it production ready.

So how do we choose between the two engines? After some experimenting with
alternative startup scenarios and dedicated caches, the following solution was
reached:

39 Stability and portability are important properties of TgX engines, which is yet another reason
for using Lua. For those doing number crunching in a document, Jit can come in handy.

Just in time 259

context --engine=luajittex ...
The usual preamble line also works:
% engine=luajittex

As the main infrastructure uses the luatex and related binaries, this will re-
sult in a relaunch: the context script will be restarted using luajittex. This
is a simple solution and the overhead is rather minimal, especially compared
to the somewhat faster run. Alternatively you can copy luajittex over luatex
but that is more drastic. Keep in mind that luatex is the benchmark for devel-
opment of CoNTgXT, so the gt aware version might fall behind sometimes.

Yet another approach is adapting the configuration file, or better, provide (or
adapt) your own texmfcnf.lua in for instance texmf-local/web2c path:

return {
type = "configuration",
version = "1.2.3",
date = "2012-12-12",
time = "12:12:12",
comment = "Local overloads",
author = "Hans Hagen, PRAGMA-ADE, Hasselt NL",
content = {
directives = {
["system.engine"] = "luajittex",
b
b
}

This has the same effect as always providing --engine=luajittex but only
makes sense in well controlled situations as you might easily forget that it's
the default. Of course one could have that file and just comment out the direc-
tive unless in test mode.

Because the bytecode of LuaJIT differs from the one used by Lua itself we have a
dedicated format as well as dedicated bytecode compiled resources (for instance
tmb instead of tmc). For most users this is not something they should bother
about as it happens automatically.

Based on experiments, by default we have disabled Jit so we only benefit from

the faster virtual machine. Future versions of CoNTEXT might provide some
control over that but first we want to conduct more experiments.

260 Just in time

40

24.7 Addendum

These developments and experiments took place in November and December
2012. At the time of this writing we also made the move to Lua 5.2 in stock
LuaTgX; the first version to provide this was 0.74. Here are some measure-
ments on Taco Hoekwater’s 64-bit LiINux machine:

LuaTgX 0.70 LuaTgX 0.74

benchmark-1 23.67 19.57 faster
benchmark-2 65.41 62.88 faster
benchmark-3 4.88 4.67 faster
benchmark-4 23.09 22.71 faster

benchmark-5 2.56/2.06 2.66/2.29 slower

There is a good chance that this is due to improvements of the garbage collector,
virtual machine and string handling. It also looks like memory consumption is

abitless. Some speed optimizations in reading files have been removed (at least

for now) and some patches to the format function (in the string namespace)

that dealt with (for TigX) unfortunate number conversions have not been ported.
The code base is somewhat cleaner and we expect to be able to split up the

binary in a core program plus some libraries that are loaded on demand.*° In

general, we don’t expect too many issues in the transition to Lua 5.2, and Con-
TEXrt is already adapted to support LuaTgX with 5.2 as well as LuasitTgX with

an older version.

Running the same tests on a 32-bit MS Winpows machine gives this:

LuaTEX 0.70 LuaTgX 0.74

benchmark-1 26.4 25.5 faster
benchmark-2 64.2 63.6 faster
benchmark-3 7.1 6.9 faster
benchmark-4 28.3 27.0 faster

benchmark-5 1.95/1.50 1.84/1.48 faster

The gain is less impressive but the machine is rather old and we can benefit
less from modern cpu properties (cache, memory bandwidth, etc.). I tend to
conclude that there is no significant improvement here but it also doesn’t get
worse. However we need to keep in mind that file 10 is less optimal in 0.74
so this might play a role. As usual, runtime is negatively influenced by the
relatively slow speed of displaying messages on the console (even when we use

Of course this poses some constraints on stability as components get decoupled, but this is
one of the issues that we hope to deal with properly in the library project.

Just in time 261

41

console2).

A few days before the end of 2012, Akira Kakuto compiled native MS WiNDows
binaries for both engines. This time I decided to run a comparison inside the
ScITE editor, that has very fast console output.*!

LuaTEX 0.74 (5.2) LuaarrTgX 0.72 (5.1)

benchmark-1 25.4 25.4 similar
benchmark-2 54.7 36.3 faster
benchmark-3 4.3 3.6 faster
benchmark-4 20.0 16.3 faster
benchmark-5 1.93/1.48 0.74/0.61 faster

Only the MetaPost library and conversion benchmark didn't show a speedup.
The regular TgX tests 1-3 gain some 15-35%. Enabling Jit (off by default)
slowed down processing. For the sake of completeness I also timed LuaJitTgX
on the console, so here you see the improvement of both engines.

LuaATEX 0.70 LuATgX 0.74 LuaJdrirTgX 0.72

benchmark-1 26.4 25.5 25.9
benchmark-2 64.2 63.6 45.5
benchmark-3 7.1 6.9 6.0
benchmark-4 28.3 27.0 23.3
benchmark-5 1.95/1.50 1.84/1.48 0.73/0.60

In this text, the term Jitr has come up a lot but you might rightfully wonder if
the observations here relate to Jit at all. For the moment I tend to conclude
that the implementation of the virtual machine and garbage collection have
more impact than the actual just—-in—time compilation. More exploration of Jit
is needed to see if we can really benefit from that. Of course the fact that we use
a bit less memory is also nice. In case you wonder why I bother about speed
at all: we happen to run LuaTgX mostly as a (remote) service and generating
a bunch of (related) documents takes a bit of time. Bringing the waiting down
from 15 to 10 seconds might not sound impressive but it makes a difference
when it is someone’s job to generate these sets.

In summary: just before we entered 2013, we saw two rather fundamental
updates of LuaTgX show up: an improved traditional one with Lua 5.2 as well
as the somewhat faster LuagitTigX with a mixture between 5.1 and 5.2. And in
2013 we will of course try to make them both even more attractive.

Most of my personal TgX runs are from within SciTE, while most runs on the servers are in
batch mode, so normally the overhead of the console is acceptable or even neglectable.

262 Just in time

The team

The LuaTEX project started in 2005 as a follow up on some experiments. The
core team consists of Taco Hoekwater, Hartmut Henkel and Hans Hagen, here
pictured at work by Duane Bibby. The machine they work on is inspired by the
Paige Typesetter (http://www.twainquotes.com/paige.html).

The team 263

264 The team

