
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

balancing



1

Introduction

Contents

1 Introduction 1

2 Intercepting the MVL 1

3 Balancing 4

4 Forcing breaks 10

5 Marks 11

6 Inserts 11

7 Discardables 15

8 Passes 17

9 Passes 17

1 Introduction

This is work in progress as per end 2024 these mechanisms are still in flux. We expect

them to be stable around the ConTEXt meeting in 2025. The text is not corrected, so

feel free to comment.

This manual is about a new (sort of fundamental) feature that got added to LuaMetaTEX

when we started upgrading column sets. In TEX we have a par builder that does a multi-

pass optimization where it considers various solutions based on tolerance, penalties,

demerits etc. The page builder on the other hand is forward looking and backtracks to

a previous break when there is an overflow. The balancing mechanism discussed here

is basically a page builder operating like the par builder: it looks at the whole picture.

In order to make this a useful mechanism the engine also permits intercepting the main

vertical list, so we start by introducing this.

2 Intercepting the MVL

When content gets processed it's added to a list. We can be in horizontal mode or

vertical mode (let's forget about math mode). In vertical mode we can be in a box

context (say \vbox) or in what is called the main vertical list: the one that makes the

page. But what is page? When TEX has collected enough to match the criteria set by

\pagegoal which starts out as \vsize, it will call the so called output routine which

basically is expanding the \output token list. That routine had do so something with

the box that has the collected material. It can become a page, likely with the content

wrapped in a page body with headers and footers and such, but it can also be stored for

later assembly, for instance in multiple columns, or after some analysis fed back into

the main vertical list.



2

Intercepting the MVL

For various mechanisms it matters if they are used inside a contained boxed environ­

ment or in the more liberal main vertical list (from now on called mvl). That's why we

can intercept the mvl and use it later. Intercepting works as follows:

\beginmvl 1

various content

\endmvl

\beginmvl 2

various content

\endmvl

When at some point you want this content, you can do this:

\setbox\scratchboxone\flushmvl 2

\setbox\scratchboxtwo\flushmvl 1

and then do whatever is needed. You can see what goes on with:

\tracingmvl 1

There is not much more to say other than that this is the way to operate on content as if

it were added to the page which can be different from collecting something in a vertical

box. Think of various callbacks that can differ for the mvl and a box.

The \beginmvl primitive takes a number or a set of keywords, as in:

\beginmvl

index 1

options \numexpr "01 + "04\relax

\relax

There is of course some possible interference with mechanism that check the page

properties like \pagegoal. If needed one can check this:

\ifcase\mvlcurrentlyactive

% main mvl

\or

% first one

\else

% other ones

\fi



3

L__

L__

Intercepting the MVL
L__

Possible applications of this mechanism are the mentioned columns and parallel, inde­

pendent, streams. However for that we need to be able to manipulate the collected con­

tent. Actually, the next manipulator preceded the capturing, because we first wanted

to make sure that what we had in mind made sense.

The beginmvl also accepts keywords. You can specify an index (an integer), a prevdepth

(dimensions) and options (an integer bitset). Possible option bit related values are:

0x1 ignore prevdepth \ignoreprevdepthmvloptioncode

0x2 no prevdepth \noprevdepthmvloptioncode

0x4 discard top \discardtopmvloptioncode

0x8 discard bottom \discardbottommvloptioncode

Here the last column is a numeric alias available in ConTEXt. More options are likely

to show up. When we eventually will balance these lists the routine will deal with the

discardables (like glue) but one can also remove them via the options.

\beginmvl

index 1

prevdepth 0pt

options \discardtopmvloptioncode

\relax

\scratchdimen\prevdepth

\dontleavehmode

\quad\the\mvlcurrentlyactive\quad\the\scratchdimen

\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]

\endmvl

\ruledhbox {\llap{1\quad}\flushmvl 1}

1 1 0.0ptL__

\beginmvl

index 2

options \numexpr

\ignoreprevdepthmvloptioncode

+ \discardtopmvloptioncode

\relax

\relax

\scratchdimen\prevdepth

\dontleavehmode

\quad\the\mvlcurrentlyactive\quad\the\scratchdimen

\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]
L__L__

L__



4

Balancing

\endmvl

\ruledhbox {\llap{2\quad}\flushmvl 2}

2 2 -1000.0ptL__

\beginmvl 3 % when no keywords are used we expect a number

\scratchdimen\prevdepth

\dontleavehmode

\quad\the\mvlcurrentlyactive\quad\the\scratchdimen

\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]

\endmvl

\ruledhbox {\llap{3\quad}\flushmvl 3}

3 3 0.0ptL__

\beginmvl index 4 options 1

\scratchdimen\prevdepth

\dontleavehmode

\quad\the\mvlcurrentlyactive\quad\the\scratchdimen

\quad\blackrule[height=\strutht,depth=\strutdp,color=darkred]

\endmvl

\ruledhbox {\llap{4\quad}\flushmvl 4}

4 4 -1000.0ptL__

3 Balancing

Balancing is not referring to balancing columns but to ‘a result that looks well balanced’.

Just like we want lines in a paragraph to look consistent with each other, something that

is reflected in the (adjacent) demerits, we want the same with vertical split of pieces.

For this purpose we took elements of the par builders to construct a (page) snippet

builder. Here are some highlights:

• Instead of a pretolerance, tolerance and emergency pass we only enable the last two.

In the par builder the pretolerance pass is the one without hyphenation.

• We seriously considered vertical discretionaries but eventually rejected the idea: we

just don't expect users to go through the trouble of adding lots of split related pre,

post and replace content. It's not hard to support it but in the end it also interfered



5

Balancing

with other demands that we had. We kept the code around for a while but then

removed it. To mention one complication: if we add some new node we also need to

intercept it in various callbacks that we already have in place in ConTEXt. As with

horizontal discretionaries, we then need to go into the components and sometimes

even need to make decisions what can not yet be made.

• As with the par builder, TEX will happily produce an overfull box when no solution

is possible that fits the constraints. In a paragraph there are plenty spaces (with

stretch) and discretionaries (with components that vary in width) which enlarges

the solution space. In vertical material there is less possible so there an emergency

pass really makes sense: better be underful than overful.

• In many cases there is no stretch available. There are also widow, club, shape and

orphan penalties that can limit the solution space.

• When we look at splitting pages (and boxes) we see (split) top skip kick in. This is

something that we need to provide one way ot the other. And as we have to do that,

we can as well provide support for bottom skip. A horizontal analogue is protrusion,

something that also has to be taken into account in a rather dynamic way, at the

beginning or end of the currently analyzed line.

• There is no equivalent of hanging indentation but a shape makes sense. Here the

shape defines heights, top and bottom skips and maybe more in the future. For that

reason we use a keyword driven shape.

• Because we have so called par passes, it made sense to have something similar for

balancing. This gives is the opportunity to experiment with various variables that

drive the process.

• For those who read what we wrote about the par builder, it will not come as surprise

that we also added extensive tracing and a callback for intercepting the results. This

makes it possible to show the same detailed output as we can do for par passes.

It's about time for some examples but before we come to that it is good to roughly

explain how the page builder works. When the page builder is triggered it will take

elements from the contributions list and add them to the page. When doing that it

keeps track of the height and depth as contributed by boxes and rules. Because it will

discard glue and kerns it does some checking there. An important feature is that the

depth is added in a next iteration. The routine also needs to look at inserts. The vari­

ables \pagegoal (original \vsize minus accumulated insert heights) and \pagetotal

are compared and when we run over the target height the accumulated stretch and

shrink in glue (when present) will be used to determine how bad this break is. If it is



6

Balancing

too bad, the previous best break will be taken. Penalties can make a possible break

more or less attractive. When the output routine gets a split of page, the total is not

reliable because we can have backtracked to the previous break. In LuaMetaTEX we

have some more variables, like \pagelastheight, that give a better estimate of what

we got.

In order to make the first lines align properly relative to the top of the page there is a

variable \topskip. The height of the first line is at least that amount. The correction is

calculated when the first contribution happens: a box or rule.

When we look at the balancer it is good to keep in mind that where the page builder

stepwise adds and checks, the balancer looks at the whole picture. The page builder

does a decent job but is less sophisticated than the par builder. There is a badness

calculation, penalties are looked at, glue is taken into account but there are no demerits.

We want the balancer to work well with column sets that are very much grid based.

But in getting there we had some hurdles to take. Because the algorithm (like the par

builder) happily results in overfull boxes unless emergency stretch is set, pages can

overflow. When there is no stretch and/or shrink using emergency stretch can give an

underfull page.

The way out of this is to have non destructive trial passes and decrease the number of

lines. Of course we can get short pages but when for instance it concerns a section title

that gets moved this is no big deal. In a similar fashion splitting a multi-line formula is

also okay.

• Collect the content in an mvl list and after that's done put the result in a box.

• Set up a balance shape that specifies the slots in in columns (normally a column is

just a blob of text).

• Perform a trial balance run. As soon as an overfull page is seen, adapt the balance

shape and do a new trial run.

• When we're fine, either because we reached the end without overfull column or by

passing the set deadcycles value, quit the trial process and balance the original list

using the most recent balance shape.

• Flush the result by fetching the topmost from the result split collection and feed it

into the page flow. The boxed pseudo page will happily trigger the output routine

that in turn construct the final page.

At some point we decided to support multiple mvl streams and therefore changed the

last mentioned step. Because we store the whole column set we can as well also store



7

Balancing

the assembled page bodies. This way we can flush different streams into the same

result.

• Flush the result by fetching the topmost from the result split collection and feed it

into the page flow. Do this for every saved (mvl) stream.

• When we're done, the boxed pseudo pages will be flushed as pages. In the process,

for every page we identify marks.

We are now ready to look at some examples. Here we also show what balance shapes

do. These basically describe a sequence of slots to be filled. The last specification is

used when we exceed the number of defined slots. These are just examples of simple

situations, for real applications more code is needed.

We start with some content in a box. This can of course be a flushed mvl but here we

just set it directly:

\setbox\scratchboxone\vbox\bgroup

\hsize.30\hsize

\samplefile{tufte}

\egroup

We will split this box in columns. If you are familiar with TEX you might know that a

paragraph of text can follow a shape defined by \parshape. In a similar way as lines

are split by width, we can split a vertical list by height. For that we define a balance

shape:

\balanceshape 3

vsize 12\lineheight

topskip \strutht

bottomskip \strutdp

next

vsize 5\lineheight

topskip \strutht

bottomskip \strutdp

next

vsize 8\lineheight

topskip \strutht

bottomskip \strutdp

\relax

\setbox\scratchboxtwo\vbalance\scratchboxone



8

Balancing

Contrary to a \parshape, a \balanceshape is not wiped after the work is done. It also

expects keys and values. As with \parpasses each step is separated by next. This

makes it an extensible mechanism. Finally we will split the box according to this shape:

\hbox \bgroup

\localcontrolledendless {%

\ifvoid\scratchboxtwo

\expandafter\quitloop

\else

\setbox\scratchbox\ruledhbox\bgroup

\vbalancedbox\scratchboxtwo

\egroup

\vbox to 12\lineheight \bgroup

\box\scratchbox

\vfill

\egroup

\hskip1em

\fi

}\unskip

\egroup

The result is shown here:

We thrive in information-thick

worlds because of our mar­

velous and everyday capacity to

select, edit, single out, struc­

ture, highlight, group, pair,

merge, harmonize, synthesize,

focus, organize, condense, re­

duce, boil down, choose, cat­

egorize, catalog, classify, list,

abstract, scan, look into, ideal­

ize, isolate, discriminate, distin­

guish, screen, pigeonhole, pick

over, sort, integrate, blend, in­

spect, filter, lump, skip, smooth,

chunk, average, approximate,

cluster, aggregate, outline,

summarize, itemize, review,

dip into, flip through, browse,

glance into, leaf through, skim,

refine, enumerate, glean, syn­

opsize, winnow the wheat from

the chaff and separate the sheep

from the goats.

Like the par builder we can end up with overfull boxes but we can deal with that by

using trial runs.

\setbox\scratchboxtwo\vbalance\scratchboxone trial

In that case the result is made from empty boxes so the original is not disturbed. Here

we show an overflow, so in the first resulting box you can compare the height with the



9

Balancing

requested one and when it's larger you can decide to decrease the first height in the

shape and try again.

Many readers will skim over

formulas on their first read­

ing of your exposition. There­

fore, your sentences should flow

smoothly when all but the sim­

plest formulas are replaced by

“blah” or some other grunting

noise.

test

Many readers will skim over

formulas on their first read­

ing of your exposition. There­

fore, your sentences should flow

smoothly when all but the sim­

plest formulas are replaced by

“blah” or some other grunting

noise.

Of course that involves some juggling of the shape but after all we have Lua at our

disposal so in the end it's all quite doable.

real target

1 167.8961pt 156.95874pt

2 65.39948pt 65.39948pt

3 49.17705pt 104.63916pt

Because the balancer can produce what otherwise the page builder produces, we need

to handle the equivalent of top skip which is what the already shown top keyword takes

care of. This means that the current slice (think current line in the par builder) has to

take that into account. This can be compared to the left- and right protrusion in the par

builder. When we typeset on a grid we have an additional demand.

When we surround (for instance a formula) with halfline spacing, we eventually have to

return on the grid. One complication is that when we are in grid mode and use half line

vertical spacing, we can end up in a situation where the initial half line space is on a

previous page. That means that we need to use a larger top skip. This is not something

that we want to burden the balancer with but we have ways to trick it into taking that

compensation into account.



10

Forcing breaks

However, when we split in the middle of that segment, we can end up with a half line

skip in a next slot because TEX will remove glue at the edge. So we end up with what we

see in the third sequence above. We deal with that in a somewhat special way: a box as

a discardable field which value will be taken into account as additional top value. That

field is set and reset by glue options 0x20 and 0x40 that can be manipulated in Lua as

part of some spacing model. Here we suffice by mentioning that it makes sure that (as

in the fourth blob above) at the top we have a half line spacing.

4 Forcing breaks

Because the initial application of balancing was in column sets, we also need the ability

to goto a next slot (step in a shape), column (possibly more steps), page (depending

on the page state), and spread (for instance if we are doubles ided). For this we use

\balanceboundary. It takes two values and when the boundary node triggers a callback

in the builder these are passed along with a shape identifier and current shape slot. That

callback can then signal back that we need to try a break here with a given penalty.

Assuming that at the Lua end we know at which slot we have a slot, column, page or

spread break. Multiple slots can be skipped by multiple boundaries. There is one pitfall:

we need something in a slot in order to break at all, so one ends up with for instance:

\balanceboundary 3 1\relax

\vskip\zeropoint

\balanceboundary 3 0\relax

\vskip\zeropoint

\balanceboundary 3 0\relax

Here the 3 is just some value that the callback can use to determine its action (like

goto a next page) and the second value provides a detail. Of course all depends on

the intended usage. By using a callback we can force breaks while not burdening the

engine with some hard coded solution. For example, in ConTEXt we used these (the

values are these from experiments and might change:

first second action user interface

1 1 or 0 goto next spread (1 initial, 0 follow up) \page[spread]

2 1 or 0 goto next page (idem) \page

3 1 or 0 goto next column (idem) \column

4 1 or 0 goto next slot (idem) \column[slot]

5 n next slot when more than n lines \testroom[5]

6 s next slot when more than s scaled points \testroom[80pt]



11

Marks

5 Marks

It is possible to synchronize the marks with those in the results of balanced segments

with a few Lua helpers that do the same as the page builder does at the start of a page,

while packaging the page and when wrapping it up. So, instead of split marks we can

have real marks.

6 Inserts

Before we go into detail, we want to point out that when implementing a (balancing)

mechanism as introduced above, decisions have to be made. In traditional TEX there

is for instance an approach to inserts that involves splitting them over pages. In our

case that is a bit harder to do but there are ways to deal with it. When deciding on an

approach it helps that we know a bit what situations occur and where we can put some

constraints. One can argue that solutions should be very generic because (for instance)

a publisher has some specific demands but in practice those are not our audience. In

decades of developing LuaTEX and LuaMetaTEX it's (ConTEXt) user demands and chal­

lenges that drives what gets implemented. Publishers, their suppliers, and large scale

(commercial) users are pretty silent when it comes to development (and supporting it)

while users communicate via meetings and mailing lists. Also, rendering of documents

that have notes are often typeset kind of traditional.

Users on the other hand have come up with demands for columns, typesetting on the

grid, multiple notes, balancing, and parallel content streams. The picture we get from

that makes us confident that what we provide is generally enough and as users under­

stand the issues at hand (maybe as side effect of struggling with solutions) it's not that

hard to explain why constraints are in place. It makes more sense to have a limited re­

liable mechanism that deals with the kind of (foot)notes that known users need than to

cook up some complex mechanism that caters potential specific demands by potential

users. Of course we have our own challenges to deal with, even if the resulting features

will probably not be used that often. So here are the criteria that make sense:

• We can assume a reasonable amount of notes.

• These are normally small with no (vertical) whitespace.

• Notes taking multiple lines may split.

• But we need to obey widow and club penalties.

• There can be math formulas but mostly inline.

• We need to keep them close to where they are referred from.

But,



12

Inserts

• We can ignore complex conflicting demands.

• As long as we get some result, we're fine.

• So users have to check what comes out.

• We don't assume fully automated unattended usage.

And of course:

• Performance should be acceptable.

• User interfaces should be intuitive.

• Memory consumption should be reasonable.

We have users who use multiple note classes so that also has to be handled but again

we don't need to come up with solutions that solve all possible demands. We can as­

sume that when a book is published that needs them, the author will operate within the

constraints.

We mentioned footnotes being handled by the page builder so how about them in these

balanced slots? Given the above remarks, we assume sane usage, so for instance

columns that have a single slot with possibly fixed content at the top or bottom (and

maybe as part of the stream). The balancer handles notes by taking their height into

account and when a result is used one can request the embedded inserts and deal with

them. Again this is very macro package dependent. Among the features dealt with are

space above and between a set of notes, which means that we need to identify the first

and successive notes in a class. Given how the routine works, this is a dynamic feature

of a line: the amount of space needed depends on how many inserts are within a slot.

When we did some extreme tests with several classes of notes and multiple per column

we saw runtime increasing because instead of a few passes we got a few hundred. In

an extreme case of 800 passes to balance the result we noticed over four million checks

for note related spacing. We could bring that down to one tenth so in the end we are

still slower but less noticeable. Here are the helper primitives for inserts:

<state> = \boxinserts <box>

<box> = \vbalancedinsert <box> <class>

<state> = \boxinserts <box>

A (foot)note implementation is very macro package dependent so the next example is

just that: an example of using the available primitive. We start by populating a mvl with

a sample text and a single footnote.

\begingroup

\forgetall

\beginmvl



13

Inserts

index 5

options \numexpr

\ignoreprevdepthmvloptioncode

+ \discardtopmvloptioncode

\relax

\relax

\hsize .4tw

Line 1 \par Line 2 \footnote {Note 1} \par Line 3 \par

Line 4 \footnote {Note 2} \par Line 5 \par Line 6 \par

\endmvl

\endgroup

We fetch the footnote number, which is one of many possible defined inserts

\cdef\currentnote{footnote}%

\scratchcounter\currentnoteinsertionnumber

The quick and dirty balancer uses a simple shape of 5 lines with normal strut properties.

From the balanced result we take two columns. We test if there is an insert and take

action when there is. Here we just filter the footnotes but there can of course be more.

We overlay these notes over (under) the column that has them. So we work per column.

\begingroup

\setbox\scratchboxone\flushmvl 5

\balanceshape 1

vsize 5lh

topskip 1sh

bottomskip 1sd

\relax

\setbox\scratchboxtwo\vbalance\scratchboxone

\ruledhbox \bgroup

\localcontrolledrepeat 2 {

\ifnum\currentloopiterator > 1

\hskip2\emwidth

\fi

\setbox\scratchboxthree\vbalancedbox\scratchboxtwo \relax

\ifnum\boxinserts\scratchboxthree > 3

\setbox\scratchboxfour\vbalancedinsert

\scratchboxthree\scratchcounter

\wd\scratchboxfour 0pt

\box\scratchboxfour



14

Inserts

\fi

\box\scratchboxthree

}\unskip

\egroup

\endgroup

The result is: 

1 Note 1

Line 1

Line 21

Line 3 

2 Note 2

Line 42

Line 5

Line 6

As we progressed we realized that the ‘balancer’ used in column sets can also be used

for single columns and we can even support a mix of single and multi columns. There is

however a problem: within a mvl we can deal with spacing but we can't do that reliable

across mvl's and especially when we cross a page it becomes hard to identify if some

(vertical) spacing is needed; we don't want it at the bottom or top of a page. This feature

is too experimental to be discussed right now.

We assumed reasonable notes to be used but even if a user tries to keep notes small

and avoid too many, there are cases where they might look like a paragraph and when

there are more in a row, it might be that a column overflows. This is why we have some

support for split notes. This is accomplished by two additional commands:

\setbox\scratchboxone\vbalance\scratchboxone\relax

\vbalanceddeinsert\scratchboxone\relax

Here we convert inserts in such a way that they are taken into account by the balancer

so that multi-slot optimization takes place. Afterwards, when we loop over the result

we can reconstruct the inserts:

\setbox\scratchboxtwo\vbalancedbox\scratchboxone

\vbalancedreinsert\scratchboxtwo\relax

Among the reasons that these are explicit actions, is that we want to experiment but

also be able to see the effect by selectively enabling it. You can get better results by

forcing depth correction.

\setbox\scratchboxone\vbalance\scratchboxone

\vbalanceddeinsert\scratchboxone forcedepth\relax



15

Discardables

This will use the depth as defined by \insertlinedepth which is an insert class specific

parameter, but discussing details of inserts is not what we do here. The reason for

using a \relax in the above examples is that we want to stress that when keywords are

involved, you need to prevent look-ahead, especially when an \if... or expandable

loop follows, which is not uncommon when we balance.

It is possible to define top and bottom inserts but of course these need to be filtered

and placed at the TEX end, so this is macro package specific. Here we just mention

that it is possible to set \insertstretch and \insertshrink which will be taken into

account. However, this can result in overlap so if indeed stretch or shrink is applied,

the handle_uinsert callback should be used for bringing what actually gets inserted

to the right dimensions. For now we consider this an experimental feature.

7 Discardables

This is a preliminary explanation.

\begingroup

\beginmvl

index 5

options \numexpr

\ignoreprevdepthmvloptioncode

+ \discardtopmvloptioncode

\relax

\relax

\hsize .4tw

\par

\vskip0pt

{\darkred \hrule discardable height 1sh depth 1sd width 1em}

\par

% we need the strut because the rule obscures it .. todo

\dorecurse{8}{\strut Line #1 \par}

\vskip\zeropoint

{\darkblue \hrule discardable height 1sh depth 1sd width 1em}

\par

\endmvl

\endgroup

\setbox\scratchboxone\flushmvl 5

\balanceshape 1

vsize 5lh



16

Discardables

topskip 1sh % see comment above

bottomskip 1sd

options 3

\relax

\setbox\scratchboxtwo\vbalance\scratchboxone\relax % lookhead

\hpack \bgroup

\localcontrolledrepeat 3 {

\ifvoid\scratchboxtwo\else

\setbox\scratchboxthree\vbalancedbox\scratchboxtwo

\ifvoid\scratchboxthree\else

\dontleavehmode\llap{[\the\currentloopiterator]\quad}%

\ruledhpack{\box\scratchboxthree}\par

\fi

\hskip 4em

\fi

}\unskip

\egroup

[1]

Line 1

Line 2

Line 3

Line 4

Line 5

[2]

Line 6

Line 7

Line 8

When at the top, the rule will be ignored and basically sticks out. When at the bottom the

rule might end up in a zero dimension box. With \vbalanceddiscard\scratchboxtwo

they will become an \nohrule. Basically we're talking of optional content. The options

bitset in the shape definition tells if we have a top (1) and/ or bottom (2), here we have

both (3) but in for instance column sets it depends. 

[1]

TO:-15.987

Line 1
BS:0.000

Line 2
BS:0.000

Line 3
BS:0.000

Line 4
BS:0.000

Line 5
BO:-15.987

[2]

TO:0.000

Line 6
BS:0.000

Line 7
BS:0.000

Line 8
VS:0.000

BO:-15.987



17

Passes

Here we actually still have the rule but marked as invisible. So, topskip has a negative

amount. In the next case the remove keyword makes the rule go away in which case we

also adapt the topskip accordingly. 

[1]

TO:0.000

Line 1
BS:0.000

Line 2
BS:0.000

Line 3
BS:0.000

Line 4
BS:0.000

Line 5
BO:-15.987

[2]

TO:0.000

Line 6
BS:0.000

Line 7
BS:0.000

Line 8
VS:0.000BO:0.000

You need to juggle a bit with skips and penalties to get this working as you like. Instead

of rules you can also use boxes, for example before:

\vskip\zeropoint

\ruledvbox discardable {\hpack{\strut BEFORE}}

\par

and after:

\forgetall \par \vskip\zeropoint

\ruledvbox discardable {\hpack{\strut AFTER}}%

\penalty\minusone % !

\par

It currently is a playground so it might (and probably will) evolve. Although it was also

made for a specific issue it might have other usage.

8 Passes

todo

\showmakeup[vpenalty,line]

\balancefinalpenalties 6 10000 9000 8000 7000 6000 5000\relax

\balancevsize 5\lineheight

\setbox\scratchbox\vbox{\dorecurse{1}{\samplefile{tufte}\footnote{!}\par}}

\vbalance\scratchbox

9 Passes

In LuaMetaTEX the par builder has been extended with additional features (like orphan,

toddler and twin control) and the ability to define and apply multiple passes over the



18

Colofon

paragraph to get the best result. The balancer has a similar feature: \balancepasses.

As with \parpasses we have an infrastructure for tracing.

% threshold

% tolerance

% looseness

% adjdemerits

% originalstretch

% emergencystretch

% emergencyfactor

% emergencypercentage

9 Colofon

Author Hans Hagen

ConTEXt 2025.01.08 16:06

LuaMetaTEX 2.11.06 20250115

Support www.pragma-ade.com

contextgarden.net

ntg-context@ntg.nl


