
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

characters



1

Introduction

Contents

1 Introduction 1

2 History 1

3 The heritage 2

4 The LMTX approach 3

5 spaces 6

1 Introduction

This explanation is part of the low level manuals because in practice users will not have

to deal with these matters in MkIV and even less in LMTX. You can skip to the last

section for commands.

2 History

If we travel back in time to when TEX was written we end up in eight bit character

universe. In fact, the first versions assumed seven bits, but for comfortable use with

languages other than English that was not sufficient. Support for eight bits permits the

usage of so called code pages as supported by operating systems. Although ascii input

became kind of the standard soon afterwards, the engine can be set up for different

encodings. This is not only true for TEX, but for many of its companions, like MetaFont

and therefore MetaPost.1

Core components of a TEX engine are hyphenation of words, applying inter-character

kerns and build ligatures. In traditional TEX engines those processes are interwoven

into the par builder but in LuaTEX these are separate stages. The original approach is

the reason that there is a relation between the input encoding and the font encoding:

the character in the input is the slot used in a reference to a glyph. When producing

the final result (e.g. pdf) there can also be a mapping to an index in a font resource.

input A [tex ->] font slot A [backend ->] glyph index A

The mapping that TEX does is normally one-to-one but an input character can undergo

some transformation. For instance a character beyond ascii 126 can be made active

and expand to some character number that then becomes the font slot. So, it is the

1 This remapping to an internal representation (e.g. ebcdic) is not present in LuaTEX where we assume utf8

to be the input encoding. The MetaPost library that comes with LuaTEX still has that code but in LuaMeta­

TEX it's gone. There one can set up the machinery to be utf8 aware too.



2

The heritage

expansion (or meaning) of a character that end up as numeric reference in the glyph

node. Virtual fonts can introduce yet another remapping but that's only visible in the

backend.

Actually, in LuaTEX the same happens but in practice there is no need to go active

because (at least in ConTEXt) we assume a Unicode path so there the font slot is the

Unicode got from the utf8 input.

In the eight bit universe macro packages (have to) provide all kind of means to deal

with (in the perspective of English) special characters. For instance, \"a would put

a diaeresis on top of the a or even better, refer to a character in the encoding that

the chosen font provides. Because there are some limitations of what can go in an

eight bit font, and because in different countries the used TEX fonts evolved kind of

independent, we ended up with quite some different variants of fonts. It was only with

the Latin Modern project that this became better. Interesting is that when we consider

the fact that such a font has often also hardly used symbols (like registered or copyright)

coming up with an encoding vector that covers most (latin based) European languages

(scripts) is not impossible2 Special symbols could simply go into a dedicated font, also

because these are always accessed via a macro so who cares about the input. It never

happened.

Keep in mind that when utf8 is used with eight bit engines, ConTEXt will convert se­

quences of characters into a slot in a font (depending on the font encoding used which

itself depends on the coverage needed). For this every first (possible) byte of a multi­

byte utf sequence is an active character, which is no big deal because these are outside

the ascii range. Normal ascii characters are single byte utf sequences and fall through

without treatment.

Anyway, in ConTEXt MkII we dealt with this by supporting mixed encodings, depending

on the (local) language, referencing the relevant font. It permits users to enter the text

in their preferred input encoding and also get the words properly hyphenated. But we

can leave these MkII details behind.

3 The heritage

In MkIV we got rid of input and font encodings, although one can still load files in a

specific code page.3 We also kept the means to enter special characters, if only because

2 And indeed in the Latin Modern project we came up with one but it was already to late for it to become

popular.
3 I'm not sure if users ever depend on an input encoding different from utf8.



3

The LMTX approach

text editors seldom support(ed) a wide range of visual editing of those. This is why we

still have

\"u \^a \v{s} \AE \ij \eacute \oslash

and many more. The ones with one character names are rather common in the TEX

community but it is definitely a weird mix of symbols. The next two are kind of outdated:

in these days you delegate that to the font handler, where turning them into ‘single’

character references depends on what the font offers, how it is set up with respect to

(for instance) ligatures, and even might depend on language or script.

The ones with the long names partly are tradition, but as we have a lot of them, in MkII

they actually serve a purpose. These verbose names are used in the so called encoding

vectors and are part of the utf expansion vectors. They are also used in labels so that

we have a good indication if what goes in there: remember that in those times editors

often didn't show characters, unless the font for display had them, or the operating

system somehow provided them from another font. These verbose names are used for

latin, greek and cyrillic and for some other scripts and symbols. They take up quite a

bit of hash space and the format file.4

4 The LMTX approach

In the process of tagging all (public) macros in LMTX (which happened in 2020-2021)

I wondered if we should keep these one character macros, the references to special

characters and the verbose ones. When asked on the mailing list it became clear that

users still expect the short ones to be present, often just because old bibTEX files are

used that might need them. However, in MkIV and LMTX we load bibTEX files in a

way that turn these special character references into proper utf8 input so it makes a

weak argument. Anyway, although they could go, for now we keep them because users

expect them. However, in LMTX the implementation is somewhat different now, a bit

more efficient in terms of hash and memory, potentially a bit less efficient in runtime,

but no one will notice that.

A new command has been introduced, the very short \chr.

\chr {a}̀ \chr {a}́ \chr {a}̈

\chr {`a} \chr {'a} \chr {"a}

\chr {a acute} \chr {a grave} \chr {a umlaut}

4 In MkII we have an abstract front-end with respect to encodings and also an abstract backend with respect

to supported drivers but both approaches no longer make sense today.



4

The LMTX approach

\chr {aacute} \chr {agrave} \chr {aumlaut}

In the first line the composed character using two characters, a base and a so called

mark. Actually, one doesn't have to use \chr in that case because ConTEXt does already

collapse characters for you. The second line looks like the shortcuts \`, \' and \". The

third and fourth lines could eventually replace the more symbolic long names, if we feel

the need. Watch out: in Unicode input the marks come after.

à á ä

à á ä

á à a˘mła˘t

á à a˘mła˘t

Currently the repertoire is somewhat limited but it can be easily be extended. It all

depends on user needs (doing Greek and Cyrillic for instance). The reason why we

actually save code deep down is that the helpers for this have always been there.5

The \" commands are now just aliases to more verbose and less hackery looking macros:

\withgrave à \` à

\withacute á \' á

\withcircumflex â \^ â

\withtilde ã \~ ã

\withmacron ā \= ā

\withbreve ĕ \u ĕ

\withdotaccent ċ \. .c

\withdiaeresis ë \" ë

\withring ů \r ů

\withhungarumlaut ű \H ű

\withcaron ě \v ě

\withcedilla ȩ \c ȩ

\withogonek ę \k ę

Not all fonts have these special characters. Most natural is to have them available as

precomposed single glyphs, but it can be that they are just two shapes with the marks

anchored to the base. It can even be that the font somehow overlays them, assuming

(roughly) equal widths. The compose font feature in ConTEXt normally can handle most

well.

5 So if needed I can port this approach back to MkIV, but for now we keep it as is because we then have a

reference.



5

The LMTX approach

An occasional ugly rendering doesn't matter that much: better have something than

nothing. But when it's the main language (script) that needs them you'd better look for

a font that handles them. When in doubt, in ConTEXt you can enable checking:

command equivalent to

\checkmissingcharacters \enabletrackers[fonts.missing]

\removemissingcharacters \enabletrackers[fonts.missing=remove]

\replacemissingcharacters \enabletrackers[fonts.missing=replace]

\handlemissingcharacters \enabletrackers[fonts.missing={decompose,replace}]

The decompose variant will try to turn a composed character into its components so

that at least you get something. If that fails it will inject a replacement symbol that

stands out so that you can check it. The console also mentions missing glyphs. You

don't need to enable this by default6 but you might occasionally do it when you use a

font for the first time.

In LMTX this mechanism has been upgraded so that replacements follow the shape and

are actually real characters. The decomposition has not yet been ported back to MkIV.

The full list of commands can be queried when a tracing module is loaded:

\usemodule[s][characters-combinations]

\showcharactercombinations

We get this list:

acute U+00301 ́ \withacute

breve U+00306 ̆ \withbreve

caron U+0030C ̌ \withcaron

caron below U+0032C ̬ \withcaronbelow

cedilla U+00327 ̧ \withcedilla

circumflex U+00302 ̂ \withcircumflex

circumflex below U+0032D ̭ \withcircumflexbelow

comma below U+00327 ̧ \withcommabelow

diaeresis U+00308 ̈ \withdiaeresis

dieresis U+00308 ̈ \withdieresis

dot U+00307 ̇ \withdot

dot below U+00323 ̣ \withdotbelow

double acute U+0030B ̋ \withdoubleacute

6 There is some overhead involved here.



6

spaces

double grave U+0030F ̏ \withdoublegrave

double vertical line U+0030E ̎ \withdoubleverticalline

grave U+00300 ̀ \withgrave

hook U+00309 ̉ \withhook

hook below U+1FA9D \withhookbelow

hungarumlaut U+0030B ̋ \withhungarumlaut

inverted breve U+00311 ̑ \withinvertedbreve

line U+00304 ̄ \withline

line below U+00331 ̱ \withlinebelow

macron U+00304 ̄ \withmacron

macron below U+00331 ̱ \withmacronbelow

middle dot U+000B7 · \withmiddledot

ogonek U+00328 ̨ \withogonek

overline U+00305 ̅

ring U+0030A ̊ \withring

ring below U+00325 ̥ \withringbelow

slash U+0002F / \withslash

stroke U+0002F / \withstroke

tilde U+00303 ̃ \withtilde

tilde below U+00330 ̰ \withtildebelow

vertical line U+0030D ̍ \withverticalline

Some combinations are special for ConTEXt because Unicode doesn't specify decompo­

sition for all composed characters.

5 spaces

The engine has no real concept of a space. When the input has one it is turned into a

glue, likely with some stretch and shrink. When \nospaces is set to one, no glue will

be inserted. A value of two will inject a zero width glue. When set to three a glyph will

be inserted with the character code set by \spacechar.

\nospaces\plusthree

\spacechar\underscoreasciicode

\hccode\underscoreasciicode\underscoreasciicode

Where are the spaces?

The hccode tells the machinery that the underscore is a valid word separator (think

compound words).

Where_are_the_spaces?_



7

Colofon

5 Colofon

Author Hans Hagen

ConTEXt 2024.05.17 16:32

LuaMetaTEX 211.3

Support www.pragma-ade.com

contextgarden.net


