
\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

\
\
\
\
\
\
\
\
\
\
\

low level

TEX

macros

1

Preamble

Contents

1 Preamble 1

2 Definitions 1

3 Runaway arguments 11

4 Introspection 12

5 nesting 13

6 Prefixes 16

7 Arguments 18

8 Constants 19

9 Passing parameters 20

10 Nesting 23

11 Duplicate hashes 25

1 Preamble

This chapter overlaps with other chapters but brings together some extensions to the

macro definition and expansion parts. As these mechanisms were stepwise extended,

the other chapters describe intermediate steps in the development.

Now, in spite of the extensions discussed here the main ides is still that we have TEX

act like before. We keep the charm of the macro language but these additions make for

easier definitions, but (at least initially) none that could not be done before using more

code.

2 Definitions

A macro definition normally looks like like this:1

\def\macro#1#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Such a macro can be used as:

\macro {1}{2}

\macro {1} {2} middle space gobbled

\macro 1 {2} middle space gobbled

\macro {1} 2 middle space gobbled

1 The \dontleavehmode command make the examples stay on one line.

2

Definitions

\macro 1 2 middle space gobbled

We show the result with some comments about how spaces are handled:

12

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

12 middle space gobbled

A definition with delimited parameters looks like this:

\def\macro[#1]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\hss}}

When we use this we get:

\macro [1]

\macro [1] leading space kept

\macro [1] trailing space kept

\macro [1] both spaces kept

Again, watch the handling of spaces:

1

1 leading space kept

1 trailing space kept

1 both spaces kept

Just for the record we show a combination:

\def\macro[#1]#2%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this:

\macro [1]{2}

\macro [1] {2}

\macro [1] 2

we can again see the spaces go away:

12

12

3

Definitions

12

A definition with two separately delimited parameters is given next:

\def\macro[#1#2]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

When used:

\macro [12]

\macro [12] leading space gobbled

\macro [12] trailing space kept

\macro [12] leading space gobbled, trailing space kept

\macro [1 2] middle space kept

\macro [1 2] leading space gobbled, middle and trailing space kept

We get ourselves:

12

12 leading space gobbled

12 trailing space kept

12 leading space gobbled, trailing space kept

1 2 middle space kept

1 2 leading space gobbled, middle and trailing space kept

These examples demonstrate that the engine does some magic with spaces before (and

therefore also between multiple) parameters.

We will now go a bit beyond what traditional TEX engines do and enter the domain of

LuaMetaTEX specific parameter specifiers. We start with one that deals with this hard

coded space behavior:

\def\macro[#^#^]%

{\dontleavehmode\hbox to 6em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The #^ specifier will count the parameter, so here we expect again two arguments but

the space is kept when parsing for them.

\macro [12]

\macro [12]

\macro [12]

\macro [12]

\macro [1 2]

4

Definitions

\macro [1 2]

Now keep in mind that we could deal well with all kind of parameter handling in Con­

TEXt for decades, so this is not really something we missed, but it complements the to be

discussed other ones and it makes sense to have that level of control. Also, availability

triggers usage. Nevertheless, some day the #^ specifier will come in handy.

12

12

12

12

1 2

1 2

We now come back to an earlier example:

\def\macro[#1]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

When we use this we see that the braces in the second call are removed:

\macro [1]

\macro [{1}]

1 1

This can be prohibited by the #+ specifier, as in:

\def\macro[#+]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\hss}}

As we see, the braces are kept:

\macro [1]

\macro [{1}]

Again, we could easily get around that (for sure intended) side effect but it just makes

nicer code when we have a feature like this.

1 {1}

Sometimes you want to grab an argument but are not interested in the results. For this

we have two specifiers: one that just ignores the argument, and another one that keeps

counting but discards it, i.e. the related parameter is empty.

5

Definitions

\def\macro[#1][#0][#3][#-][#4]%

{\dontleavehmode\hbox spread 1em

{\vl\type{#1}\vl\type{#2}\vl\type{#3}\vl\type{#4}\vl\hss}}

The second argument is empty and the fourth argument is simply ignored which is why

we need #4 for the fifth entry.

\macro [1][2][3][4][5]

Here is proof that it works:

135

The reasoning behind dropping arguments is that for some cases we get around the

nine argument limitation, but more important is that we don't construct token lists that

are not used, which is more memory (and maybe even cpu cache) friendly.

Spaces are always kind of special in TEX, so it will be no surprise that we have another

specifier that relates to spaces.

\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

This permits usage like the following:

\macro [1][2]

\macro [1] [2]

12 12

Without the optional ‘grab spaces’ specifier the second line would possibly throw an

error. This because TEX then tries to match][so the] [in the input is simply added

to the first argument and the next occurrence of][will be used. That one can be

someplace further in your source and if not TEX complains about a premature end of file.

But, with the #* option it works out okay (unless of course you don't have that second

argument [2].

Now, you might wonder if there is a way to deal with that second delimited argument

being optional and of course that can be programmed quite well in traditional macro

code. In fact, ConTEXt does that a lot because it is set up as a parameter driven system

with optional arguments. That subsystem has been optimized to the max over years

and it works quite well and performance wise there is very little to gain. However, as

soon as you enable tracing you end up in an avalanche of expansions and that is no fun.

6

Definitions

This time the solution is not in some special specifier but in the way a macro gets de­

fined.

\tolerant\def\macro[#1]#*[#2]%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

The magic \tolerant prefix with delimited arguments and just quits when there is no

match. So, this is acceptable:

\macro [1][2]

\macro [1] [2]

\macro [1]

\macro

12 12 1

We can check how many arguments have been processed with a dedicated conditional:

\tolerant\def\macro[#1]#*[#2]%

{\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

We use this test:

\macro [1][2] \macro [1] [2] \macro [1] \macro

The result is: 2: 12 2: 12 1: 10: which is what we expect because we flush inline and

there is no change of mode. When the following definition is used in display mode, the

leading n= can for instance start a new paragraph and when code in \everypar you can

loose the right number when macros get expanded before the n gets injected.

\tolerant\def\macro[#1]#*[#2]%

{n=\ifarguments 0\or 1\or 2\or ?\fi: \vl\type{#1}\vl\type{#2}\vl}

In addition to the \ifarguments test primitive there is also a related internal counter

\lastarguments set that you can consult, so the \ifarguments is actually just a shortcut

for \ifcase\lastarguments.

We now continue with the argument specifiers and the next two relate to this optional

grabbing. Consider the next definition:

\tolerant\def\macro#1#*#2%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

With this test:

7

Definitions

\macro {1} {2}

\macro {1}

\macro

We get:

12 1\macro

This is okay because the last \macro is a valid (single token) argument. But, we can

make the braces mandate:

\tolerant\def\macro#=#*#=%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Here the #= forces a check for braces, so:

\macro {1} {2}

\macro {1}

\macro

gives this:

12 1

However, we do loose these braces and sometimes you don't want that. Of course when

you pass the results downstream to another macro you can always add them, but it was

cheap to add a related specifier:

\tolerant\def\macro#_#*#_%

{\dontleavehmode\hbox spread 1em{\vl\type{#1}\vl\type{#2}\vl\hss}}

Again, the magic \tolerant prefix works will quit scanning when there is no match. So:

\macro {1} {2}

\macro {1}

\macro

leads to:

{1}{2} {1}

When you're tolerant it can be that you still want to pick up some argument later on.

This is why we have a continuation option.

\tolerant\def\foo [#1]#*[#2]#:#3{!#1!#2!#3!}

8

Definitions

\tolerant\def\oof[#1]#*[#2]#:(#3)#:#4{!#1!#2!#3!#4!}

\tolerant\def\ofo [#1]#:(#2)#:#3{!#1!#2!#3!}

Hopefully the next example demonstrates how it works:

\foo{3} \foo[1]{3} \foo[1][2]{3}

\oof{4} \oof[1]{4} \oof[1][2]{4}

\oof[1][2](3){4} \oof[1](3){4} \oof(3){4}

\ofo{3} \ofo[1]{3}

\ofo[1](2){3} \ofo(2){3}

As you can see we can have multiple continuations using the #: directive:

!!!3! !1!!3! !1!2!3!

!!!!4! !1!!!4! !1!2!!4!

!1!2!3!4! !1!!3!4! !!!3!4!

!!!3! !1!!3!

!1!2!3! !!2!3!

The last specifier doesn't work well with the \ifarguments state because we no longer

know what arguments were skipped. This is why we have another test for arguments.

A zero value means that the next token is not a parameter reference, a value of one

means that a parameter has been set and a value of two signals an empty parameter.

So, it reports the state of the given parameter as a kind if \ifcase.

\def\foo#1#2{ [\ifparameter#1\or(ONE)\fi\ifparameter#2\or(TWO)\fi] }

Of course the test has to be followed by a valid parameter specifier:

\foo{1}{2} \foo{1}{} \foo{}{2} \foo{}{}

The previous code gives this:

[(ONE)(TWO)] [(ONE)] [(TWO)] []

A combination check \ifparameters, again a case, matches the first parameter that

has a value set.

We could add plenty of specifiers but we need to keep in ind that we're not talking of an

expression scanner. We need to keep performance in mind, so nesting and backtracking

are no option. We also have a limited set of useable single characters, but here's one

that uses a symbol that we had left:

\def\startfoo[#/]#/\stopfoo{ [#1](#2) }

9

Definitions

The slash directive removes leading and trailing so called spacers as well as tokens that

represent a paragraph end:

\startfoo [x] x \stopfoo

\startfoo [x] x \stopfoo

\startfoo [x] x \stopfoo

\startfoo [x] \par x \par \par \stopfoo

So we get this:

x x x x

The next directive, the quitter #;, is demonstrated with an example. When no match

has occurred, scanning picks up after this signal, otherwise we just quit.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

10

Definitions

///1/ ///2/ ///3/

I have to admit that I don't really need it but it made some macros that I was redefining

behave better, so there is some self-interest here. Anyway, I considered some other

features, like picking up a detokenized argument but I don't expect that to be of much

use. In the meantime we ran out of reasonable characters, but some day #? and #!

might show up, or maybe I find a use for #< and #>. A summary of all this is given here:

+ keep the braces

- discard and don't count the argument

/ remove leading an trailing spaces and pars

= braces are mandate

_ braces are mandate and kept

^ keep leading spaces

1-9 an argument

0 discard but count the argument

* ignore spaces

: pick up scanning here

; quit scanning

. ignore pars and spaces

, push back space when quit

The last two have not been discussed and were added later. The period directive gobbles

space and par tokens and discards them in the process. The comma directive is like *

but it pushes back a space when the matching quits.

\tolerant\def\foo[#1]#;(#2){/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\tolerant\def\foo[#1]#;#={/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;#2{/#1/#2/}

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

\tolerant\def\foo[#1]#;(#2)#;#={/#1/#2/#3/}

11

Runaway arguments

\foo[1]\quad\foo[2]\quad\foo[3]\par

\foo(1)\quad\foo(2)\quad\foo(3)\par

\foo{1}\quad\foo{2}\quad\foo{3}\par

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1// /2// /3//

//1/ //2/ //3/

/1/// /2/// /3///

//1// //2// //3//

///1/ ///2/ ///3/

Gobbling spaces versus pushing back is an interface design decision because it has to

do with consistency.

3 Runaway arguments

There is a particular troublesome case left: a runaway argument. The solution is not

pretty but it's the only way: we need to tell the parser that it can quit.

\tolerant\def\foo[#1=#2]%

{\ifarguments 0\or 1\or 2\or 3\or 4\fi:\vl\type{#1}\vl\type{#2}\vl}

The outcome demonstrates that one still has to do some additional checking for sane

results and there are alternative way to (ab)use this mechanism. It all boils down to a

clever combination of delimiters and \ignorearguments.

\dontleavehmode \foo[a=1]

\dontleavehmode \foo[b=]

\dontleavehmode \foo[=]

\dontleavehmode \foo[x]\ignorearguments

All calls are accepted:

2:a1

2:b

2:

1:x]

Just in case you wonder about performance: don't expect miracles here. On the one

hand there is some extra overhead in the engine (when defining macros as well as when

12

Introspection

collecting arguments during a macro call) and maybe using these new features can

sort of compensate that. As mentioned: the gain is mostly in cleaner macro code and

less clutter in tracing. And I just want the ConTEXt code to look nice: that way users

can look in the source to see what happens and not drown in all these show-off tricks,

special characters like underscores, at signs, question marks and exclamation marks.

For the record: I normally run tests to see if there are performance side effects and

as long as processing the test suite that has thousands of files of all kind doesn't take

more time it's okay. Actually, there is a little gain in ConTEXt but that is to be expected,

but I bet users won't notice it, because it's easily offset by some inefficient styling. Of

course another gain of loosing some indirectness is that error messages point to the

macro that the user called for and not to some follow up.

4 Introspection

A macro has a meaning. You can serialize that meaning as follows:

\tolerant\protected\def\foo#1[#2]#*[#3]%

{(1=#1) (2=#3) (3=#3)}

\meaning\foo

The meaning of \foo comes out as:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

When you load the module system-tokens you can also say:

\luatokentable\foo

This produces a table of tokens specifications:

tolerant protected macro:#1[#2]#*[#3]->(1=#1) (2=#3) (3=#3)

tolerant protected control sequence: foo

375590 19 49 match argument 1

587801 12 91 other char [U+0005B

31583 19 50 match argument 2

586338 12 93 other char] U+0005D

554178 19 42 match argument *

386933 12 91 other char [U+0005B

588269 19 51 match argument 3

13

nesting

553403 12 93 other char] U+0005D

588013 20 0 end match

588158 12 40 other char (U+00028

421807 12 49 other char 1 U+00031

588045 12 61 other char = U+0003D

587644 21 1 parameter reference

588221 12 41 other char) U+00029

588259 10 32 spacer

263771 12 40 other char (U+00028

575899 12 50 other char 2 U+00032

587944 12 61 other char = U+0003D

118860 21 3 parameter reference

586381 12 41 other char) U+00029

588065 10 32 spacer

31621 12 40 other char (U+00028

587633 12 51 other char 3 U+00033

337866 12 61 other char = U+0003D

243472 21 3 parameter reference

588133 12 41 other char) U+00029

A token list is a linked list of tokens. The magic numbers in the first column are the

token memory pointers. and because macros (and token lists) get recycled at some point

the available tokens get scattered, which is reflected in the order of these numbers.

Normally macros defined in the macro package are more sequential because they stay

around from the start. The second and third row show the so called command code and

the specifier. The command code groups primitives in categories, the specifier is an

indicator of what specific action will follow, a register number a reference, etc. Users

don't need to know these details. This macro is a special version of the online variant:

\showluatokens\foo

That one is always available and shows a similar list on the console. Again, users nor­

mally don't want to know such details.

5 nesting

You can nest macros, as in:

\def\foo#1#2{\def\oof##1{<#1>##1<#2>}}

14

nesting

At first sight the duplication of # looks strange but this is what happens. When TEX scans

the definition of \foo it sees two arguments. Their specification ends up in the preamble

that defines the matching. When the body is scanned, the #1 and #2 are turned into

a parameter reference. In order to make nested macros with arguments possible a #

followed by another # becomes just one #. Keep in mind that the definition of \oof is

delayed till the macro \foo gets expanded. That definition is just stored and the only

thing that get's replaced are the two references to a macro parameter

control sequence: foo

566100 19 49 match argument 1

588183 19 50 match argument 2

314722 20 0 end match

553355 126 1 def def

286091 144 0 tolerant call oof

263815 6 35 parameter

31637 12 49 other char 1 U+00031

587996 1 123 left brace

421822 12 60 other char < U+0003C

587630 21 1 parameter reference

31594 12 62 other char > U+0003E

587671 6 35 parameter

118864 12 49 other char 1 U+00031

553373 12 60 other char < U+0003C

587964 21 2 parameter reference

586249 12 62 other char > U+0003E

587744 2 125 right brace

Now, when we look at these details, it might become clear why for instance we have

‘variable’ names like #4 and not #whatever (with or without hash). Macros are essen­

tially token lists and token lists can be seen as a sequence of numbers. This is not

that different from other programming environments. When you run into buzzwords

like ‘bytecode’ and ‘virtual machines’ there is actually nothing special about it: some

high level programming (using whatever concept, and in the case of TEX it's macros)

eventually ends up as a sequence of instructions, say bytecodes. Then you need some

machinery to run over that and act upon those numbers. It's something you arrive at

naturally when you play with interpreting languages.2

2 I actually did when I wrote an interpreter for some computer assisted learning system, think of a kind of

interpreted Pascal, but later realized that it was a a bytecode plus virtual machine thing. I'd just applied

what I learned when playing with eight bit processors that took bytes, and interpreted opcodes and such.

15

nesting

So, internally a #4 is just one token, a operator-operand combination where the operator

is “grab a parameter” and the operand tells “where to store” it. Using names is of course

an option but then one has to do more parsing and turn the name into a number3, add

additional checking in the macro body, figure out some way to retain the name for the

purpose of reporting (which then uses more token memory or strings). It is simply not

worth the trouble, let alone the fact that we loose performance, and when TEX showed

up those things really mattered.

It is also important to realize that a # becomes either a preamble token (grab an argu­

ment) or a reference token (inject the passed tokens into a new input level). Therefore

the duplication of hash tokens ## that you see in macro nested bodies also makes sense:

it makes it possible for the parser to distinguish between levels. Take:

\def\foo#1{\def\oof##1{#1##1#1}}

Of course one can think of this:

\def\foo#fence{\def\oof#text{#fence#text#fence}}

But such names really have to be unique then! Actually ConTEXt does have an input

method that supports such names, but discussing it here is a bit out of scope. Now,

imagine that in the above case we use this:

\def\foo[#1][#2]{\def\oof##1{#1##1#2}}

If you're a bit familiar with the fact that TEX has a model of category codes you can

imagine that a predictable “hash followed by a number” is way more robust than en­

forcing the user to ensure that catcodes of ‘names’ are in the right category (read: is

a bracket part of the name or not). So, say that we go completely arbitrary names, we

then suddenly needs some escaping, like:

\def\foo[#{left}][#{right}]{\def\oof#{text}{#{left}#{text}#{right}}}

And, if you ever looked into macro packages, you will notice that they differ in the

way they assign category codes. Asking users to take that into account when defining

macros makes not that much sense.

So, before one complains about TEX being obscure (the hash thing), think twice. Your

demand for simplicity for your coding demand will make coding more cumbersome for

There's nothing spectacular about all this and I only realized decades later that the buzzwords describes

old natural concepts.
3 This is kind of what MetaPost does with parameters to macros. The side effect is that in reporting you get

text0, expr2 and such reported which doesn't make things more clear.

16

Prefixes

the complex cases that macro packages have to deal with. It's comparable using TEX for

input or using (say) mark down. For simple documents the later is fine, but when things

become complex, you end up with similar complexity (or even worse because you lost

the enforced detailed structure). So, just accept the unavoidable: any language has its

peculiar properties (and for sure I do know why I dislike some languages for it). The

TEX system is not the only one where dollars, percent signs, ampersands and hashes

have special meaning.

6 Prefixes

Traditional TEX has three prefixes that can be used with macros: \global, \outer and

\long. The last two are no-op's in LuaMetaTEX and if you want to know what they do

(did) you can look it up in the TEXbook. The 𝜀-TEX extension gave us \protected.

In LuaMetaTEX we have \global, \protected, \tolerant and overload related prefixes

like \frozen. A protected macro is one that doesn't expand in an expandable context, so

for instance inside an \edef. You can force expansion by using the \expand primitive

in front which is also something LuaMetaTEX.

Frozen macros cannot be redefined without some effort. This feature can to some extent

be used to prevent a user from overloading, but it also makes it harder for the macro

package itself to redefine on the fly. You can remove the lock with \unletfrozen and

add a lock with \letfrozen so in the end users still have all the freedoms that TEX

normally provides.

\def\foo{foo} 1: \meaning\foo

\frozen\def\foo{foo} 2: \meaning\foo

\unletfrozen \foo 3: \meaning\foo

\protected\frozen\def\foo{foo} 4: \meaning\foo

\unletfrozen \foo 5: \meaning\foo

1: macro:foo

2: macro:foo

3: macro:foo

4: protected macro:foo

5: protected macro:foo

This actually only works when you have set \overloadmode to a value that permits

redefining a frozen macro, so for the purpose of this example we set it to zero.

A \tolerant macro is one that will quit scanning arguments when a delimiter cannot

be matched. We saw examples of that in a previous section.

17

Prefixes

These prefixes can be chained (in arbitrary order):

\frozen\tolerant\protected\global\def\foo[#1]#*[#2]{...}

There is actually an additional prefix, \immediate but that one is there as signal for a

macro that is defined in and handled by Lua. This prefix can then perform the same

function as the one in traditional TEX, where it is used for backend related tasks like

\write.

Now, the question is of course, to what extent will ConTEXt use these new features.

One important argument in favor of using \tolerant is that it gives (hopefully) better

error messages. It also needs less code due to lack of indirectness. Using \frozen adds

some safeguards although in some places where ConTEXt itself overloads commands,

we need to defrost. Adapting the code is a tedious process and it can introduce errors

due to mistypings, although these can easily be fixed. So, it will be used but it will take

a while to adapt the code base.

One problem with frozen macros is that they don't play nice with for instance \fu­

turelet. Also, there are places in ConTEXt where we actually do redefine some core

macro that we also want to protect from redefinition by a user. One can of course \un­

letfrozen such a command first but as a bonus we have a prefix \overloaded that can

be used as prefix. So, one can easily redefine a frozen macro but it takes a little effort.

After all, this feature is mainly meant to protect a user for side effects of definitions,

and not as final blocker.4

A frozen macro can still be overloaded, so what if we want to prevent that? For this we

have the \permanent prefix. Internally we also create primitives but we don't have a

prefix for that. But we do have one for a very special case which we demonstrate with

an example:

\def\FOO % trickery needed to pick up an optional argument

{\noalign{\vskip10pt}}

\noaligned\protected\tolerant\def\OOF[#1]%

{\noalign{\vskip\iftok{#1}\emptytoks10pt\else#1\fi}}

\starttabulate[|l|l|]

\NC test \NC test \NC \NR

\NC test \NC test \NC \NR

4 As usual adding features like this takes some experimenting and we're now at the third variant of the

implementation, so we're getting there. The fact that we can apply such features in large macro package

like ConTEXt helps figuring out the needs and best approaches.

18

Arguments

\FOO

\NC test \NC test \NC \NR

\OOF[30pt]

\NC test \NC test \NC \NR

\OOF

\NC test \NC test \NC \NR

\stoptabulate

When TEX scans input (from a file or token list) and starts an alignment, it will pick up

rows. When a row is finished it will look ahead for a \noalign and it expands the next

token. However, when that token is protected, the scanner will not see a \noalign in

that macro so it will likely start complaining when that next macro does get expanded

and produces a \noalign when a cell is built. The \noaligned prefix flags a macro as

being one that will do some \noalign as part of its expansion. This trick permits clean

macros that pick up arguments. Of course it can be done with traditional means but

this whole exercise is about making the code look nice.

The table comes out as:

test test

test test

test test

test test

test test

One can check the flags with \ifflags which takes a control sequence and a number,

where valid numbers are:

1 frozen 2 permanent 4 immutable 8 primitive

16 mutable 32 noaligned 64 instance

The level of checking is controlled with the \overloadmode but I'm still not sure about

how many levels we need there. A zero value disables checking, the values 1 and 3 give

warnings and the values 2 and 4 trigger an error.

7 Arguments

The number of arguments that a macro takes is traditionally limited to nine (or ten if one

takes the trailing # into account). That this is enough for most cases is demonstrated by

19

Constants

the fact that ConTEXt has only a handful of macros that use #9. The reason for this

limitation is in part a side effect of the way the macro preamble and arguments are

parsed. However, because in LuaMetaTEX we use a different implementation, it was not

that hard to permit a few more arguments, which is why we support upto 15 arguments,

as in:

\def\foo#1#2#3#4#5#6#7#8#9#A#B#C#D#E#F{...}

We can support the whole alphabet without much trouble but somehow sticking to the

hexadecimal numbers makes sense. It is unlikely that the core of ConTEXt will use

this option but sometimes at the user level it can be handy. The penalty in terms of

performance can be neglected.

\tolerant\def\foo#=#=#=#=#=#=#=#=#=#=#=#=#=#=#=%

{(#1)(#2)(#3)(#4)(#5)(#6)(#7)(#8)(#9)(#A)(#B)(#C)(#D)(#E)(#F)}

\foo{1}{2}

In the previous example we have 15 optional arguments where braces are mandate

(otherwise we the scanner happily scoops up what follows which for sure gives some

error).

8 Constants

The LuaMetaTEX engine has lots of efficiency tricks in the macro parsing and expansion

code that makes it not only fast but also let is use less memory. However, every time that

the body of a macro is to be injected the expansion machinery kicks in. This often means

that a copy is made (pushed in the input and used afterwards). There are however cases

where the body is just a list of character tokens (with category letter or other) and no

expansion run over the list is needed.

It is tempting to introduce a string data type that just stores strings and although that

might happen at some point it has the disadvantage that one need to tokenize that string

in order to be able to use it, which then defeats the gain. An alternative has been found

in constant macros, that is: a macro without parameters and a body that is considered

to be expanded and never freed by redefinition. There are two variants:

\cdef \foo {whatever}

\cdefcsname foo\endcsname{whatever}

These are actually just equivalents to

\edef \foo {whatever}

20

Passing parameters

\edefcsname foo\endcsname{whatever}

just to make sure that the body gets expanded at definition time but they are also marked

as being constant which in some cases might give some gain, for instance when used in

csname construction. The gain is less then one expects although there are a few cases

in ConTEXt where extreme usage of parameters benefits from it. Users are unlikely to

use these two primitives.

Another example of a constant usage is this:

\lettonothing\foo

which gives \foo an empty body. That one is used in the core, if only because it gives a

bit smaller code. Performance is no that different from

\let\foo\empty

but it saves one token (8 bytes) when used in a macro. The assignment itself is not that

different because \foo is made an alias to \emptywhich in turn only needs incrementing

a reference counter.

9 Passing parameters

When you define a macro, the #1 and more parameters are embedded as a reference to

a parameter that is passed. When we have four parameters, the parameter stack has

four entries and when an entry is eventually accessed a new input level is pushed and

tokens are fetched from that list. This has some side effects when we check a parameter.

This can happen multiple times, depending on how often we access a parameter. Take

the following:

\def\oof#1{#1}

\tolerant\def\foo[#1]#*[#2]%

{1:\ifparameter#1\or Y\else N\fi\quad

2:\ifparameter#2\or Y\else N\fi\quad

\oof{3:\ifparameter #1\or Y\else N\fi\quad

4:\ifparameter #2\or Y\else N\fi\quad}%

\par}

\foo \foo[] \foo[][] \foo[A] \foo[A][B]

This gives:

21

Passing parameters

1:N 2:N 3:N 4:N

1:N 2:N 3:N 4:N

1:N 2:N 3:N 4:N

1:Y 2:N 3:Y 4:N

1:Y 2:Y 3:Y 4:Y

as you probably expect. However the first two checks are different from the embedded

checks because they can check against the parameter reference. When we expand \oof

its argument gets passed to the macro as a list and when the scanner collects the next

token it will then push the parameter content on the input stack. So, then, instead of

a reference we get the referenced parameter list. Internally that means that in 3 and

4 we check for a token and not for the length of the list (as in case 1 & 2). This means

that

\iftok{#1}\emptytoks Y\else N\fi

\ifparameter#1\or Y\else N\fi

are different. In the first case we have a proper token list and nested conditionals in

that list are okay. In the second case we just look ahead to see if there is an \or, \else

or other condition related command and if so we decide that there is no parameter. So,

if \ifparameter is a suitable check for empty depends on the need for expansion.

When you define macros that themselves call macros that should operate on the argu­

ments of its parent you can easily pass these:

\def\foo#1#2%

{\oof{#1}{#2}{P}%

\oof{#1}{#2}{Q}%

\oof{#1}{#2}{R}}

\def\oof#1#2#3%

{[#1][#1]%

#3%

[#2][#2]}

Here the nested call to \oof involved three passed parameters. You can avoid that as

follows:

\def\foo#1#2%

{\def\MyIndexOne{#1}%

\def\MyIndexTwo{#2}%

\oof{P}\oof{Q}\oof{R}}

22

Passing parameters

\def\oof#1%

{(\MyIndexOne)(\MyIndexOne)%

#1%

(\MyIndexTwo)(\MyIndexTwo)}

You can also do this:

\def\foo#1#2%

{\def\oof##1%

{/#1/#2/%

##1%

/#1//#2/}%

\oof{P}\oof{Q}\oof{R}}

These parameters indicated by # in the macro body are in fact references. When we call

for instance \foo{1}{2} the two parameters get pushed on a parameter stack and the

embodied references point to these stack entries. By the time that body gets expanded

TEX bumps the input level and pushes the parameter list onto the input stack. It then

continues expansion. The parameter is not copied, because it can't be changed anyway.

The only penalty in terms of performance and memory usage is the pushing and popping

of the input. So how does that work out for these three cases?

When in the first case the \oof{#1}{#2}{P} is seen, TEX starts expanding the \oof

macro. That one expects three arguments. The #1 reference is seen and in this case

a copy of that parameter is passed. The same is true for the other two. Then, inside

\oof expansion happens on the parameters on the stack and no copies have to be made

there.

The second case defines two macros so again two copies are made that make the bodies

of these macros. This comes at the cost of some runtime and memory. However, this

time with \oof{P} only one argument gets passed and instead expansion of the macros

happen in there.

Normally macro arguments are not that large but there can be situations where we

really want to avoid useless copying. This not only saves memory but also can give a

bit better performance. In the examples above the second variant is some 10%faster

than the first one. We can gain another 10%with the following trick:

\def\foo#1#2%

{\parameterdef\MyIndexOne\plusone % 1

\parameterdef\MyIndexTwo\plustwo % 2

\oof{P}\oof{Q}\oof{R}\norelax}

23

Nesting

\def\oof#1%

{<\MyIndexOne><\MyIndexOne>%

#1%

<\MyIndexTwo><\MyIndexTwo>}

Here we define an explicit parameter reference that we access later on. There is the

overhead of a definition but it can be neglected. We use that reference (abstraction) in

\oof. Actually you can use that reference in any call down the chain.

When applied to \foo{1}{2} the four variants above give us:

[1][1]P[2][2][1][1]Q[2][2][1][1]R[2][2]

(1)(1)P(2)(2)(1)(1)Q(2)(2)(1)(1)R(2)(2)

/1/2/P/1//2//1/2/Q/1//2//1/2/R/1//2/

<1><1>P<2><2><1><1>Q<2><2><1><1>R<2><2>

Before we had parameterdef we had this:

\def\foo#1#2%

{\integerdef\MyIndexOne\parameterindex\plusone % 1

\integerdef\MyIndexTwo\parameterindex\plustwo % 2

\oof{P}\oof{Q}\oof{R}\norelax}

\def\oof#1%

{<\expandparameter\MyIndexOne><\expandparameter\MyIndexOne>%

#1%

<\expandparameter\MyIndexTwo><\expandparameter\MyIndexTwo>}

It involves more tokens, is a bit less abstract, but as it is a cheap extension we kept it.

It actually demonstrates that one can access parameters in the stack by index, but it

one then needs to keep track of where access takes place. In principle one can debug

the call chain this way.

To come back to performance and memory usage, when the arguments become larger

the fourth variant with the \parameterdef quickly gains over the others. But it only

shows in exceptional usage. This mechanism is more about abstraction: it permits

us to efficiently turn arguments into local variables without the overhead involved in

creating macros.

10 Nesting

We also have a few preamble features that relate to nesting. Although we can do without

(as shown for years in LMTX) they do have some benefits. They are discussed as group

24

Nesting

here and because they are only useful for low level programming we stick to simple

examples. The #L and #R use the following token as delimiters. Here we use [and]

but they can be a \cs as well. Nested delimiters are handled well.

The #S grabs the argument till the next final square bracket] but in the process will

grab nested with it sees a [. The #P does the same for parentheses and #X for angle

brackets. In the next examples the #* just gobbles optional spaces but we've seen that

one already.

The #G argument just registers the next token as delimiter but it will grab multiple of

them. The #M gobbles more: in addition to the delimiter spaces are gobbled.

\tolerant\def\fooA [#1]{(#1)}

\tolerant\def\fooB [#L[#R]#1{(#1)}

\tolerant\def\fooC #S#1{(#1)}

\tolerant\def\fooE #S#1,{(#1)}

\tolerant\def\fooF #S#1#*#S#2{(#1/#2)}

\tolerant\def\fooG [#1]#S[#2]#*#S[#3]{(#1/#2/#3)}

\tolerant\def\fooH [#1][#S#2]#*[#S#3]{(#1/#2/#3)}

\tolerant\def\fooI #1=#2#G,{(#1=#2)}

\tolerant\def\fooJ #1=#2#M,{(#1=#2)}

\fooA[x] (x) (x)

\fooB[x] (x) (x)

\fooC[1[2]3[4]5] ([1[2]3[4]5]) (1[2]3[4]5)

\fooE X[,]X, (X[,]X) (X[,]X)

\fooF[A] [B] ([A]/[B]) (A/B)

\fooF[] [] ([]/[]) (/)

\fooG[a][b][c] (a/b/c) (a/b/c)

\fooG[a][b] (a/b/) (a/b/)

\fooG[a] (a//) (a//)

\fooG[a][x[x]x][c] (a/x[x]x/c) (a/x[x]x/c)

\fooH[a][x[x]x][c] (a/x[x]x/c) (a/x[x]x/c)

\fooI X=X,,, (X=X) (X=X)

\fooJ X=X, , , (X=X) (X=X)

These features make it possible to support nested setups more efficiently and also

makes it possible to accept values that contain balanced brackets in setup commands

without additional overhead. Although it has never been an issue to let users specify:

\defineoverlay[whatever][{some \command[withparameters] here}]

25

Duplicate hashes

\setupfoo[before={\blank[big]}]

it might be less confusing to permit:

\defineoverlay[whatever][some \command[withparameters] here]

\setupfoo[before=\blank[big]]

as well, if only because occasionally users get hit by this.

11 Duplicate hashes

In TEX every character has a so called category code. Most characters are classified as

‘letter’ (they make up words) or as ‘other’. In Unicode we distinguish symbols, punc­

tuation, and more, but in TEX these are all of category ‘other’. In math however we

can classify them differently but in this perspective we ignore that. The backslash has

category ‘escape’ and it starts a control sequence. The curly braces are (internally) of

category ‘left brace’ and ‘right brace’ aka ‘begin group’ and ‘end group’ but, no mat­

ter what they are called, they begin and end something: a group, argument, token list,

box, etc. Any character can have those categories. Although it would loook strange to

a TEX user, this can be made valid:

!protected !gdef !weird¶1

B

something: ¶1

E

!weird BhereE

In such a setup spaces can be of category ‘invisible’. The paragraph symbol takes the

place of the hash as parameter identifier. The next code shows how this is done. Here

we wrap all in a macro so that we don't get catcode interference in the document source.

\def\NotSoTeX

{\begingroup

\catcode `B \begingroupcatcode

\catcode `E \endgroupcatcode

\catcode `¶ \parametercatcode

\catcode `! \escapecatcode

\catcode 32 \ignorecatcode

\catcode 13 \ignorecatcode

% this buffer has a definition:

\getbuffer

26

Duplicate hashes

% which is now known globally

\endgroup}

\NotSoTeX

\weird{there}

This results in:

something:here

something:there

In the first line the !, B and E are used as escape and argument delimiters, in the second

one we use the normal characters. When we show the \meaningasis we get:

\protected \def \weird #1{something:#1}

or in more detail:

protected control sequence: weird

587646 19 49 match argument 1

575899 20 0 end match

587783 11 115 letter s U+00073

553235 11 111 letter o U+0006F

382533 11 109 letter m U+0006D

587577 11 101 letter e U+00065

587893 11 116 letter t U+00074

587634 11 104 letter h U+00068

586384 11 105 letter i U+00069

588152 11 110 letter n U+0006E

589430 11 103 letter g U+00067

588298 12 58 other char : U+0003A

47097 21 1 parameter reference

So, no matter how we set up the system, in the end we get some generic representation.

When we see #1 in ‘print’ it can be either two tokens, # (catcode parameter) followed

by 1 with catcode other, or one token referring to parameter 1 where the character 1

is the opcode of an internal ‘reference command’. In order to distinguish a reference

from the two token case, parameter hash tokens get shown as doubles.

\def\test #1{x#1x##1x####1x}

\def\tset ¶1{x¶1x¶¶1x¶¶¶¶1x}

27

Duplicate hashes

And with \meaning we get, consistent with the input:

macro:#1->x#1x##1x####1x

macro:#1->x#1x¶¶1x¶¶¶¶1x

These are equivalent, apart from the parameter character in the body of the definition:

control sequence: test

588105 19 49 match argument 1

589301 20 0 end match

31609 11 120 letter x U+00078

589254 21 1 parameter reference

588107 11 120 letter x U+00078

587558 6 35 parameter

587674 12 49 other char 1 U+00031

589229 11 120 letter x U+00078

589238 6 35 parameter

589236 6 35 parameter

575863 12 49 other char 1 U+00031

589703 11 120 letter x U+00078

control sequence: tset

588361 19 49 match argument 1

587960 20 0 end match

588175 11 120 letter x U+00078

118856 21 1 parameter reference

589736 11 120 letter x U+00078

587926 6 182 parameter

587957 12 49 other char 1 U+00031

553354 11 120 letter x U+00078

589729 6 182 parameter

243478 6 182 parameter

588343 12 49 other char 1 U+00031

575776 11 120 letter x U+00078

Watch how every ‘parameter’ is just a character with the Unicode index of the used

input character as property. Let us summarize the process. When a single parameter

character is seen in the input, the next characer determines how it will be interpreted.

28

Duplicate hashes

If there is a digit then it becomes a reference to a parameter in the preamble, and

when followed by another parameter character it will be appended to the body of the

macro and that second one is dropped. So, two parameter characters become one,

and four become two. One parameter character becomes a reference and from that

you can guess what three in a row become. However, when TEX is showing the macro

definition (using meaning) the hashes get duplicated in order to distinguish parameter

references from parameter characters that were kept (e.g. for nested definitions). One

can make an argument for \parameterchar as we also have \escapechar but by now

this convention is settled and it doesn't look that bad anyway.

We now come to the more tricky part with respect to the doubling of hashes. When TEX

was written its application landscape looked a bit different. For instance, fonts were

limited and therefore it was natural to access special characters by name. Using \#

to get a hash in the text was not that problematic, if one needed that character at all.

The same can be said for the braces, backslash and even the dollar (after all TEX is free

software).

But what if we have more visualization and/or serialization than meanings and trac­

ing? When we opened op the internals in LuaTEX and even more in LuaMetaTEX the

duplicating of hashes became a bit of a problem. There we don't need to distinguish

between a parameter reference and a parameter character because by that time these

references are resolved. All hashes that we encounter are just that: hashes. And this is

why in LuaMetaTEX we disable the duplication for those cases where it serves no pur­

pose.

When the engine scans a macro definition it starts with pickin g up the name of the

macro. Then it starts scanning the preamble upto the left brace. In the preamble of a

macro the scanner converts hashes followed by another token into single match token.

Then when the macro body is scanned single hashes followed by a number become a

reference, while double hashes become one hash and get interpreted at expansion time

(possibly triggering an error when not followed by a valid specifier like a number). In

traditional TEX we basically had this:

\def\test#1{#1}

\def\test#1{##}

\def\test#1{#X}

\def\test#1{##1}

There can be a traling # in the preamble for special purposes but we forget about that

now. The first definition is valid, the second definition is invalid when the macro is

expanded and the third definition triggers an error at definition time. The last definition

will again trigger an error at expansion time.

29

Duplicate hashes

However, in LuaMetaTEX we have an extended preamble where the following preamble

parameters are handled (some only in tolerant mode):

#n parameter index 1 upto E

#0 throw away parameter increment index

#- ignore parameter keep index

#* gobble white space

#+ keep (honor) the braces

#. ignore pars and spaces

#, push back space when no match

#/ remove leading and trailing spaces and pars

#= braces are mandate

#^ keep leading spaces

#_ braces are mandate and kept (obey)

#@ par delimiter only for internal usage

#: pick up scanning here

#; quit scanning

#L left delimiter token followed by token

#R right delimiter token followed by token

#G gobble token followed by token

#M gobble token and spaces followed by token

#S nest square brackets only inner pairs

#X nest angle brackets only inner pairs

#P nest parentheses only inner pairs

As mentioned these will become so called match tokens and only when we show the

meaning the hash will show up again.

\def\test[#1]#*[*S#2]{.#1.#2.}

control sequence: test

575861 12 91 other char [U+0005B

587568 19 49 match argument 1

588325 12 93 other char] U+0005D

589761 19 42 match argument *

30

Duplicate hashes

575884 12 91 other char [U+0005B

587752 12 42 other char * U+0002A

392332 11 83 letter S U+00053

589711 19 50 match argument 2

587928 12 93 other char] U+0005D

589714 20 0 end match

553395 12 46 other char . U+0002E

587896 21 1 parameter reference

589098 12 46 other char . U+0002E

589451 21 2 parameter reference

187705 12 46 other char . U+0002E

This means that in the body of a macro you will not see #* show up. It is just a directive

that tells the macro parser that spaces are to be skipped. The #S directive makes the

parser for the second parameter handle nested square bracket. The only hash that we

can see end up in the body is the one that we entered as double hash (then turned single)

followed by (in traditional terms) a number that when all gets parsed with then become

a reference: the sequence ##1 internally is #1 and becomes ‘reference to parameter

1’ assuming that we define a macro in that body. If no number is there, an error is

issued. This opens up the possibility to add more variants because it will only break

compatibility with respect to what is seen as error. As with the preamble extensions,

old documents that have them would have crashed before they became available.

So, this means that in the body, and actually anywhere in the document apart from

preambles, we now support the following general parameter specifiers. Keep in mind

that they expand in an expansion context which can be tricky when they overlap with

preamble entries, like for instance #R in such an expansion. Future extensions can add

more so any hashed shortcut is sensitive for that.

#I current iterator \currentloopiterator

#P parent iterator \previousloopiterator 1

#G grandparent iterator \previousloopiterator 2

#H hash escape #

#S space escape

#T tab escape \t

#L newline escape \n

#R return escape \r

#X backslash escape \

31

Colofon

#N nbsp U+00A0 (under consideration)

#Z zws U+200B (under consideration)

Some will now argue that we already have ^^ escapes in TEX and ^^^^ and ^^^^^^ in

LuaTEX and that is true. However, these can be disabled, and in ConTEXt they are, where

we instead enable the prescript, postscript, and index features in mathmode and there

type ^ and _ are used. Even more: in ConTEXt we just let ^, _ and & be what they are.

Occasionally I consider $ to be just that but as I don't have dollars I will happily leave

that for inline math. When users are not defining macros or are using the alternative

definitions we can consider making the # a hash. An excellent discussion of how TEX

reads it's input and changes state accordingly can be found in Victor Eijkhouts “TEX By

Topic”, section 2.6: when ̂ ^ is followed by a character with 𝑣 < 128 the interpreter will

inject a character with code 𝑣 − 64. When followed by two (!) lowercase hexadecimal

characters, the corresponding character will be injected. Anyway, it not only looks kind

of ugly, it also is somewhat weird because what follows is interpreted mixed way. The

substitution happens early on (which is okay). But, how about the output? Traditional

TEX serializes special characters with a similar syntax but that has become optional

when eight bit mode was added to the engines, it is configurable in LuaTEX and has

been dropped in LuaMetaTEX: we operate in a utf universum.

11 Colofon

Author Hans Hagen

ConTEXt 2024.02.14 13:38

LuaMetaTEX 212.1

Support www.pragma-ade.com

contextgarden.net

