
ℒ = − 1
4 (𝜕𝜇𝐵𝜈 − 𝜕𝜈𝐵𝜇)(𝜕 𝜇𝐵𝜈− 𝜕𝜈𝐵𝜇) − 1

8 Tr{[𝜕𝜇𝑊𝜈 − 𝜕𝜈𝑊𝜇 + 𝑖𝑔2
2 (𝑊𝜇𝑊𝜈 −

𝑊𝜈𝑊𝜇)][𝜕 𝜇𝑊 𝜈−𝜕𝜈𝑊 𝜇+ 𝑖𝑔2
2 (𝑊 𝜇𝑊 𝜈−𝑊 𝜈𝑊 𝜇)]}− 1

2 Tr{[𝜕𝜇𝐺𝜈 −𝜕𝜈𝐺𝜇 +

𝐺𝜇𝐺𝜈 −𝐺𝜈𝐺𝜇][𝜕 𝜇𝐺𝜈−𝜕𝜈𝐺𝜇+𝐺𝜇𝐺𝜈−𝐺𝜈𝐺𝜇]}+( 𝜈𝐿
𝑒𝐿 )

†

�̃� 𝜇𝑖[𝜕𝜇 − 𝑖𝑔1
2 𝐵𝜇 +

𝑖𝑔2
2 𝑊𝜇]( 𝜈𝐿

𝑒𝐿 ) − {[𝜕𝜇 − 𝑖𝑔1
2 𝐵𝜇 + 𝑖𝑔2

2 𝑊𝜇]( 𝜈𝐿
𝑒𝐿 )}

†

𝑖�̃� 𝜇( 𝜈𝐿
𝑒𝐿 ) + 𝑒 †

𝑅 𝑖𝜎 𝜇[𝜕𝜇 −

𝑖𝑔1𝐵𝜇]𝑒𝑅 + 𝜈 †
𝑅 𝑖𝜎 𝜇𝜕𝜇𝜈𝑅 − {[𝜕𝜇 − 𝑖𝑔1𝐵𝜇] 𝑒𝑅} †

𝑖𝜎 𝜇𝑒𝑅 − {𝜕𝜇𝜈𝑅} †
𝑖𝜎 𝜇𝜈𝑅 −

√2
𝜈

⎡⎢
⎣

( 𝜈𝐿
𝑒𝐿 )

†

𝜙𝑀 𝑒𝑒𝑅 + 𝑒 †
𝑅 𝑀 𝑒†𝜙†( 𝜈𝐿

𝑒𝐿 )⎤⎥
⎦

− √2
𝜈

⎡⎢
⎣

( −𝑒𝐿𝜈𝐿
)

†

𝜙∗𝑀 𝜈𝜈𝑅 +

𝜈 †
𝑅 𝑀 𝜈 †𝜙𝑇( −𝑒𝐿𝜈𝐿

)⎤⎥
⎦

+ ( 𝑢𝐿
𝑑𝐿

)
†

�̃� 𝜇𝑖[𝜕𝜇 − 𝑖𝑔1
6 𝐵𝜇 + 𝑖𝑔2

2 𝑊𝜇 + 𝑖𝑔𝐺𝜇]( 𝑢𝐿
𝑑𝐿

) −

{[𝜕𝜇 − 𝑖𝑔1
6 𝐵𝜇 + 𝑖𝑔2

2 𝑊𝜇 + 𝑖𝑔𝐺𝜇]( 𝑢𝐿
𝑑𝐿

)}
†

𝑖�̃� 𝜇( 𝑢𝐿
𝑑𝐿

) + 𝑢†
𝑅 𝜎 𝜇𝑖[𝜕𝜇 + 𝑖𝑔1

3 𝐵𝜇 +

𝑖𝑔𝐺𝜇]𝑢𝑟 − {[𝜕𝜇 + 𝑖𝑔1
3 𝐵𝜇 + 𝑖𝑔𝐺𝜇]𝑢𝑟}

†

𝑖𝜎 𝜇𝑢𝑅 + 𝑑 †
𝑅 𝜎 𝜇𝑖[𝜕𝜇 − 𝑖𝑔1

3 𝐵𝜇 +

𝑖𝑔𝐺𝜇]𝑑𝑅 − {[𝜕𝜇 − 𝑖𝑔1
3 𝐵𝜇 + 𝑖𝑔𝐺𝜇]𝑑𝑅}

†

𝑖𝜎 𝜇𝑑𝑅 − √2
𝜈

⎡⎢
⎣

( 𝑢𝐿
𝑑𝐿

)
†

𝜙𝑀 𝑑𝑑𝑅 +

(𝑀 𝑑𝑑𝑅) †
𝜙†( 𝑢𝐿

𝑑𝐿
)⎤⎥
⎦

− √2
𝜈

⎡⎢
⎣

( −𝑑𝐿𝑢𝐿
)

†

𝜙∗𝑀 𝑢𝑢𝑅 + (𝑀 𝑢𝑢𝑅) †𝜙⊤( −𝑑𝐿𝑢𝐿
)⎤⎥
⎦

+

{[𝜕𝜇 + 𝑖𝑔1
2 𝐵𝜇 + 𝑖𝑔2

2 𝑊𝜇]𝜙}
†

[𝜕 𝜇+ 𝑖𝑔1
2 𝐵𝜇+ 𝑖𝑔2

2 𝑊 𝜇]𝜙 − 𝑚2
ℎ

2𝜈 2 [𝜙†𝜙 − 𝜈 2

2 ]
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The longmath package provides yet another solution to some well known typesetting prob-

lems solved in a variety of ways: multi line formulas with paired and nested delimiters.

It tackles the problem at the Lua level, which has some advantages over solutions imple-

mented in TEX. In particular, the TEX code need not be executed multiple times, and there

is no interference between TEX grouping and the nesting of delimiter groups.

As a byproduct, delimiters can be scaled in various ways, inner delimiters come in different

flavours like relational and binary operators, punctuation symbols etc., and outer delimiters

can be selected automatically according to the nesting level. Last but not least, delimiter

groups can even extend across several array cells or across the whole document.

A special environment is provided as well, which allows multi line expressions to be placed

inside a displayed equation and make TEX do the line splitting and alignment.
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1 Delimiters

The longmath package provides “long” versions of the \left and \right primitives.

• \lleft [scale] delimiter marks the beginning of a delimiter group and inserts an opening delimiter.

• \rright [scale] delimiter marks the end of a delimiter group and inserts a closing delimiter.

The optional scale argument will be explained below. The delimiter can be anything that is also accepted by \left

and \right, including a dot representing an invisible or null delimiter, any character with a \delcode, or an explicit

\delimiter or \Udelimiter. If youwant to use the longmath packagewith existing documents, or just stick to the familiar

notation, and provided that this does not cause conflicts with other packages manipulating the original primitives, it is

even save to say \let\left\lleft and \let\right\rright.

Here is a simple example. Of course, as LATEX authors, we should better use some math environment instead of $$, but

let’s stick to them here just to save some space, and indicate that everything should work regardless of what environment

we use.

The Sellmann-Yokuzi contribution to the

Johansson Entropy is given by

$$ S^\top = k · \lleft[ A + \lleft( B_C

+ D^{E^2} \rright) ^ { \lleft( 3+κ^2 \rright)^2 }

+ F \rright] $$

The Sellmann-Yokuzi contribution to the Johansson

Entropy is given by

𝑆⊤ = 𝑘 · ⎡⎢
⎣
𝐴 + (𝐵𝐶 + 𝐷𝐸2)

(3+𝜅2)2

+ 𝐹⎤⎥
⎦

The \lleft and \rright delimiters enclose a delimiter group. Within the group, you can have arbitrarily many inner

or middle delimiters. As these often have different interpretations, several “long” variants of the \middle primitive are

provided, associated with different types of math atoms.

• \mmiddle [scale] delimiter inserts an inner delimiter into a delimiter group.

• \mmrel [scale] delimiter interprets the delimiter as a relational operator.

• \mmbin [scale] delimiter interprets the delimiter as a binary operator.

• \mmord [scale] delimiter interprets the delimiter as an ordinary symbol.

• \mmop [scale] delimiter interprets the delimiter as a large operator.

• \mmpunct [scale] delimiter interprets the delimiter as a punctuation character.

They differ in the way TEX inserts spaces before and after these delimiters, just as if you had written \mathrel{delimiter},

\mathbin{delimiter}, etc. Like the \middle primitive, the \mmiddle variant creates a \mathinner{delimiter}.

The scalar product is written as

$$ \lleft\langle A_1 \mmiddle| \tilde A_2 \rright\rangle . $$

The scalar product is written as

⟨𝐴1 ∣ ̃𝐴2⟩.

There are three parallel lines

$$ \lleft. A_1 B_1 \mmrel \Vert A_2 \hat B_2

\mmrel \Vert \hat A_2 B_2 \rright. . $$

There are three parallel lines

𝐴1𝐵1 ∥ 𝐴2�̂�2 ∥ ̂𝐴2𝐵2.

The centre of mass is defined as

$$ \vec R = \lleft( \sum_{k=1}^{n} m_k \, \vec r_k

\mmbin / \sum_{k=1}^{n} m_k \rright) . $$

The centre of mass is defined as

�⃗� = ⎛⎜
⎝

𝑛
∑
𝑘=1

𝑚𝑘 ⃗𝑟𝑘 /
𝑛

∑
𝑘=1

𝑚𝑘
⎞⎟
⎠

.

Vectors can be written as tuples like

$$ \lleft( \tilde X_1 \mmpunct| \tilde X_2 \mmpunct|

\tilde X_3 \mmpunct| \dots \rright) . $$

Vectors can be written as tuples like

(�̃�1∣ �̃�2∣ �̃�3∣ …).

This expression makes no sense:

$$ \lleft. \int \mmord( \sum \mmord[ \prod \mmord\} \rright. $$

This expression makes no sense:

∫ ( ∑ [ ∏ }
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Unlike the standard \left-\middle-\right primitives, the long variants do not create subformulas or induce grouping

at the TEX level. TEXnically, each delimiter is actually its own group, paired with an invisible delimiter, and with an

empty \hbox between them. As such, it behaves like a single mathematical symbol of the respective type, or like an

atom in TEX’s language. In particular, sub- and superscripts can be attached to individual delimiters, not only to the

whole group, and the operator version really behaves like a big operator.

Applying the triangular square limit, we get

$$ \lleft. W(x) + \mmop \uparrow_n^\infty

\frac{ 1-x^n }{ 1-x } \rright. = \log( x ). $$

Applying the triangular square limit, we get

𝑊(𝑥) +
∞↑↑↑↑↑↑𝑛

1 − 𝑥𝑛

1 − 𝑥 = log(𝑥).

The relations $1^\star$ and $2^\star$ imply the existence of

$$ \lleft[ \lleft( A_k \mmrel |^{\lleft(1^\star\rright)}

B_k \mmrel |^{\lleft(2^\star\rright)}

C_k \rright) \rright] .$$

The relations 1⋆ and 2⋆ imply the existence

of

[(𝐴𝑘 ∣(1⋆) 𝐵𝑘 ∣(2⋆) 𝐶𝑘)].

Within a formula or subformula, you can have unbalanced groups, or even inner delimiters only. The formula is then

interpreted and typeset as if there were invisible delimiters at one or both ends.

$$ \prod_{p\in\mathbfit{P}} G(p) \mmbin \uparrow

\sum_{q\in\mathbfit{Q}} H(q) \mmbin \downarrow

\lim_{x\to\infty} F(x) $$

∏
𝑝∈𝑷

𝐺(𝑝)
↑↑↑↑↑↑↑↑↑

∑
𝑞∈𝑸

𝐻(𝑞)
↓↓↓↓↓↓↓↓↓
lim𝑥→∞ 𝐹(𝑥)

A skewed-rational fraction can be written as

$$ \frac{ x × \lleft( 1 - x^2 }

{ x^2 + 1 \rright) × x } . $$

A skewed-rational fraction can be written as

𝑥 × (1 − 𝑥2

𝑥2 + 1) × 𝑥
.

When the formula is processed, each actual delimiter group is temporarily put in a box and the size of that box is

determined. Then the dimensions of the empty \hboxes inside the fake delimiter groups are set accordingly, so that TEX

can apply its algorithm to finally fix the sizes of the delimiters. As this takes place after the whole formula has been

transformed into a list of math nodes, no TEX code has to be processed multiple times. It also allows to add some features

that cannot be implemented otherwise, unless you are willing to go really deep into macro and token magic.

For example, the limits of large operators like sums or integrals can be excluded from the box that determines the

delimiter size. This feature can be turned on and off with two control sequences.

• \includelimits includes the limits of large operators (default).

• \ignorelimits ignores the limits of large operators.

It is possible to use the switch in the middle of a formula or even inside a delimiter group. The switch position at the

moment the operator is created determines whether its limits are included or ignored.

\ignorelimits

$$ \vec R = \lleft( \sum_{k=1}^{n} m_k \, \vec r_k

\mmbin / \sum_{k=1}^{n} m_k \rright) . $$

�⃗� = (
𝑛

∑
𝑘=1

𝑚𝑘 ⃗𝑟𝑘 /
𝑛

∑
𝑘=1

𝑚𝑘).

$$ \lleft[ \ignorelimits \sum_{A_X^3}^{A_Y^3} F(Z)

+ \includelimits \sum_a^c f(x) \rright] $$ [
𝐴3

𝑌

∑
𝐴3

𝑋

𝐹(𝑍) +
𝑐

∑
𝑎

𝑓 (𝑥)]

\includelimits

$$ A = 3 × \lleft[ \int\limits_1^5

\lleft( 1 + \sqrt{ 1 + x } \rright) \, \mathrm{d}x \rright] $$

𝐴 = 3 × ⎡⎢
⎣

5
∫
1

(1 + √1 + 𝑥) d𝑥⎤⎥
⎦

\ignorelimits

$$ A = 3 × \lleft[ \int\limits_1^5

\lleft( 1 + \sqrt{ 1 + x } \rright) \, \mathrm{d}x \rright] $$

𝐴 = 3 × [
5
∫
1

(1 + √1 + 𝑥) d𝑥]
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There are several ways to fine tune the sizes of delimiters. A priori, the minimal size of all delimiters within a group

is determined by the total height and depth of everything in this group, except for the delimiters themselves. TEX then

checks if a predefined character with the required size exists in the current math font and uses it. Otherwise it creates

a stretched symbol with the required size.

Two plain TEX parameters modify the finally chosen sizes of all delimiters. By default, they are used to shrink them

slightly, whichmakes the final formula look less bulkywhile keeping it readably. This can be seen in the integral example

above. An additional third parameter is provided by the longmath package, which applies to middle delimiters only.

• \delimiterfactor factor scales all delimiters by factor/1000 (default 901).

• \delimitershortfall dimension limits the shrinkage of delimiters to the dimension (default 5.0pt).

• \delimiterscale factor additionally scales middle delimiters by factor/1000 (default 902).

The parameters \delimiterfactor (a count register) and \delimitershortfall (a dimension register) are explained in

the TEXbook. Briefly summarised, every delimiter is finally resized by the given factor/1000, but the shrinkage is limited

to the given dimension. The \delimiterscale (another count register) is applied to all middle delimiters before the final

scaling is applied, and there is no limited shrinkage at this stage.

\delimiterscale 400

$$ \vec R = \lleft( \sum_{k=1}^{n} m_k \, \vec r_k

\mmbin / \sum_{k=1}^{n} m_k \rright) . $$

�⃗� = ⎛⎜
⎝

𝑛
∑
𝑘=1

𝑚𝑘 ⃗𝑟𝑘 /
𝑛

∑
𝑘=1

𝑚𝑘
⎞⎟
⎠

.

Instead of changing \delimiterscale, the scale factor can also be applied to each delimiter individually, using the

optional scale argument. In this case, the \delimiterscale is ignored and replaced by the given number.

$$ X = \lleft ( \sum_k^\infty A \mmbin 900 | \sum_k^\infty B

\mmbin 700 | \sum_k^\infty C \mmbin 500 | \sum_k^\infty D

\mmbin 300 | \sum_k^\infty E \rright ) $$

𝑋 = ⎛⎜
⎝

∞
∑

𝑘
𝐴 ∣

∞
∑

𝑘
𝐵 ∣

∞
∑

𝑘
𝐶 ∣

∞
∑

𝑘
𝐷 ∣

∞
∑

𝑘
𝐸⎞⎟

⎠

If you want to produce strange and ugly results, you can even scale the opening and closing delimiters independently,

or choose factors greater than 1000.

$$ \vec R = \lleft 900 ( \sum_{k=1}^{n} m_k \, \vec r_k

\mmbin 1300 \divslash \sum_{k=1}^{n} m_k \rright 700 ) $$ �⃗� = (
𝑛

∑
𝑘=1

𝑚𝑘 ⃗𝑟𝑘 /
𝑛

∑
𝑘=1

𝑚𝑘)

2 Alignment

There are two more special delimiter types not listed in section 1. They are treated as middle delimiters regarding the

logical grouping, but when they are finally typeset, they are treated as opening and closing delimiters.

• \mleft [scale] delimiter typesets a left delimiter, but does not open a new group.

• \mright [scale] delimiter typesets a right delimiter, but does not close the current group.

To see what they are useful for, consider the following example.

$$ \lleft( A + \sum B \rright)

\lleft( C + \int D \rright) $$
(𝐴 + ∑ 𝐵)(𝐶 + ∫ 𝐷)

Can we make the brackets to have the same size? A few \vphantoms would probably fix it. But then we need to know in

advance which symbols are the responsible ones, or we have to place the content of each bracket as a phantom inside

the other one and make TEX process everything twice. Alternatively, we could include everything in a single group

and make the two brackets in the middle inner delimiters. But then the correct spacing between them and the adjacent

symbols is lost.

$$ \lleft( A + \sum B \mmiddle )

\mmiddle ( C + \int D \rright) $$
(𝐴 + ∑ 𝐵 ) ( 𝐶 + ∫ 𝐷)
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With \mleft and \mright, we get the same sizes and the correct spacing. Since in this case we only have these two pairs

of brackets, we can simple make the whole formula a single group.

$$ \mleft( A + \sum B \mright)

\mleft( C + \int D \mright) $$
(𝐴 + ∑ 𝐵)(𝐶 + ∫ 𝐷)

What \mleft and \mright basically do is not to adapt the opening and closing delimiters to the content between them,

but align them with the enclosing group.

$$ \lleft( \mleft( 1 + 2 \mright) \mleft( 1 + 2^2 \mright) \mleft( 1 + 2^{2^2} \mright)

\mleft( 1 + 2^{2^{2^2}} \mright) + \mleft( 1 + 3 \mright) \mleft( 1 + 3^3 \mright)

\mleft( 1 + 3^{3^3} \mright) + \mleft( 1 + 5 \mright) \mleft( 1 + 5^5 \mright) \rright) $$

((1 + 2)(1 + 22)(1 + 222)(1 + 2222
) + (1 + 3)(1 + 33)(1 + 333) + (1 + 5)(1 + 55))

But what if there is more stuff inside the enclosing group and we only want to align particular brackets with each other?

Something like this, and we want both the square and the round brackets to be aligned.

$$ F\lleft[ X \rright] \lleft( 1 + 2^2 \rright) \lleft( 1 + 2^{2^2} \rright)

+ F\lleft[ X^2 \rright] \lleft( 1 + 3^3 \rright) \lleft( 1 + 3^{3^3} \rright)

+ F\lleft[ X^3 \rright] \lleft( 1 + 5^5 \rright) \lleft( 1 + 5^{5^5} \rright) $$

𝐹[𝑋](1 + 22)(1 + 222) + 𝐹[𝑋2](1 + 33)(1 + 333) + 𝐹[𝑋3](1 + 55)(1 + 555)

Now we definitely need \vphantoms, right? In principle, yes, but the longmath package provides a way to set them up

automatically and hide them inside the delimiters. To use this feature, we have to attach a tag to those delimiters we

want to align. The tag is enclosed in braces and placed between the control sequence and the delimiter symbol.

• \type {tag} [scale] delimiter aligns this delimiter with all delimiters with the same tag.

Here, \type is any of the above delimiter types, and the tag is any string that would also do as, say, an argument to

\label. The basic idea is to make all delimiters with the same tag attached to them behave as if they belong to the same

group. So, the problem just posed can be solved as follows.

$$ F\lleft {Fx} [ X \rright] \lleft {Pw} ( 1 + 2^2 \rright) \lleft {Pw} ( 1 + 2^{2^2} \rright)

+ F\lleft {Fx} [ X^2 \rright] \lleft {Pw} ( 1 + 3^3 \rright) \lleft {Pw} ( 1 + 3^{3^3} \rright)

+ F\lleft {Fx} [ X^3 \rright] \lleft {Pw} ( 1 + 5^5 \rright) \lleft {Pw} ( 1 + 5^{5^5} \rright) $$

𝐹[𝑋](1 + 22)(1 + 222) + 𝐹[𝑋2](1 + 33)(1 + 333) + 𝐹[𝑋3](1 + 55)(1 + 555)

It is enough to tag only the left delimiters, or just one delimiter per group, because those belonging to the same group

are aligned anyway. What we actually do is to align groups with each other, not individual delimiters.

The groups being linked need not belong to a common subformula. Here we want to align the brackets and the division

slashed in the numerators.

$$ \frac{ \lleft ( a + 1 \rright) \mmord / x }{a}

+ \frac{ \lleft ( \sum_k b^k \rright) \mmord / y }{b}

+ \frac{ \lleft ( c^2 + 1 \rright) \mmord / z }{c} $$

(𝑎 + 1)/𝑥
𝑎 +

(∑𝑘 𝑏𝑘)/𝑦
𝑏 +

(𝑐2 + 1)/𝑧
𝑐

This is how it can be done.

$$ \frac{ \lleft {f5} ( a + 1 \rright) \mmord / x }{a}

+ \frac{ \lleft {f5} ( \sum_k b^k \rright) \mmord / y }{b}

+ \frac{ \lleft {f5} ( c^2 + 1 \rright) \mmord / z }{c} $$

(𝑎 + 1)/𝑥
𝑎 +

(∑𝑘 𝑏𝑘)/𝑦
𝑏 +

(𝑐2 + 1)/𝑧
𝑐
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Note that the division slashes are outside the linked groups. But in each numerator, the slash belongs to the enclosing

group, which is the subformula formed by the numerator. As this group also contains the brackets, the size of the slash

is also adapted to them and thus all slashes get the same size as well. Alternatively, we could have done it like this.

$$ \frac{ \mleft ( a + 1 \mright) \mmord {f6} / x }{a}

+ \frac{ \mleft ( \sum_k b^k \mright) \mmord {f6} / y }{b}

+ \frac{ \mleft ( c^2 + 1 \mright) \mmord {f6} / z }{c} $$

(𝑎 + 1)/𝑥
𝑎 +

(∑𝑘 𝑏𝑘)/𝑦
𝑏 +

(𝑐2 + 1)/𝑧
𝑐

But not like this, which aligns the slashes, but not the brackets.

$$ \frac{ \lleft ( a + 1 \rright) \mmord {f7} / x }{a}

+ \frac{ \lleft ( \sum_k b^k \rright) \mmord {f7} / y }{b}

+ \frac{ \lleft ( c^2 + 1 \rright) \mmord {f7} / z }{c} $$

(𝑎 + 1)/𝑥
𝑎 +

(∑𝑘 𝑏𝑘)/𝑦
𝑏 +

(𝑐2 + 1)/𝑧
𝑐

For the alignment to work, the linked delimiters need not be visible. An invisible inner delimiter basically behaves like

a \vphantom, whose content is the whole group to which this delimiter belongs. More precisely, it is actually the empty

\hbox that is present in our special delimiters which replaces the \vphantom. We can use this to align the square roots

in the following example.

$$ \sqrt{ \mleft {sq8} . a + 1 }

+ \sqrt{ \mleft {sq8} . \sum\nolimits_k b_k }

+ \sqrt{ \mleft {sq8} . c^2 + 1 } $$

√𝑎 + 1 + √∑
𝑘

𝑏𝑘 + √𝑐2 + 1

Why did we use \mleft here, and not one of the middle delimiters? The first reason is that putting an opening atom at

the beginning of a subformula will get the horizontal spacing correct, independent of what kind of symbol follows. The

second reason is that a middle delimiter would be scaled by \delimiterscale, so that it wouldn’t have the required size

to align the heights of the square roots. The \delimiterfactor is irrelevant here, because it doesn’t affect an invisible

delimiter.

We can even go a step further and link delimiters in different equations and, in fact, all across the document.

Equations that start with

$$ \lleft( \int\limits_1^\infty f(x) \, \mathrm{d}x \rright)

\lleft {longeq} ( \sum_k a_k + 1000 + 999 + \cdots $$

often go on for pages and end with

$$ \cdots + 1 \rright {longeq} ) = 0 . $$

Equations that start with

⎛⎜
⎝

∞
∫
1

𝑓 (𝑥) d𝑥⎞⎟
⎠

⎛⎜
⎝

∑
𝑘

𝑎𝑘 + 1000 + 999 + ⋯

often go on for pages and end with

⋯ + 1⎞⎟
⎠

= 0.

To make this possible, the LATEX method of storing information in the aux file is used. The dimensions of all tagged

delimiter groups are saved and reloaded when the document is typeset the next time. It therefore requires a second run

to get the sizes of linked delimiters correct. If the size of any delimiter changes while the typesetting is in progress,

a warning message is issued at the end, similar to the message that you need to rerun the document to get all the

\references to \labels right.

You will also get a warning message if you set up the tags so that some delimiter group is linked to its own parent or

subgroup. In such a case, there is no consistent way to determine the required sizes. With each run, they will change

randomly or even start to increase and diverge. It’s okay, however, to link delimiters in different math styles. You can

link an exponent in script style to its own basis in display style, although this might not make much sense.

For all this to work, the tags must be document wide unique. But unlike equation labels or bibliography entries, they

typically only link delimiters within a single equation or an array of equations. It is therefore preferable to have short

tags like the ones used above, or even simple letters or numbers. To make this possible, you can locally define a prefix,

which is added to each tag used within its scope.

• \delimiterprefix{prefix} prepends the prefix to the tags of all tagged delimiters.

It is then sufficient to use a document wide unique prefix for each section, equation, or whatever scope suits best. The

setting is local to the TEX group, but if the same prefix is used at different places, the tagged delimiters within those
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scopes are linked to each other. For example, if the prefix is introduction- and the tag a2 is attached to a delimiter,

then the actual tag used internally is introduction-a2, and this is a global name.

You can even automate this, by setting a dynamical prefix like this in the preamble.

\delimiterprefix{\theequation.}

Provided that you use unique equations numbers, and link delimiters within single equations only, your tags will then

always be local to the current equation, something like 5.16.a if the tag a is used in equation (5.16).

The perhaps most useful application of tagged delimiters is to typeset formulas that extend over several cells or lines

in an array. Here is a little challenge. In the following array, we want the multiplication and addition operators to be

aligned vertically, and of course the brackets to be adapted to the content they enclose. We use the array package to

define a few special column types to get the math style and the spacing correct.

\newcolumntype{d}{ >{\displaystyle} c }

\newcolumntype{s}{ @{} >{{}} c <{{}} @{} }

$$ \begin{array}{dsdsdsd}

\lleft [ Z & - & \sum_k A & × &

\lleft ( B & + & C^X \rright ) \rright ] \\[3ex]

\lleft [ P & × & \lleft ( U & + &

\int_R V \rright ) & - & W^Y \rright ]

\end{array} $$

[𝑍 − ∑
𝑘

𝐴 × (𝐵 + 𝐶𝑋)]

[𝑃 × (𝑈 + ∫
𝑅

𝑉) − 𝑊𝑌]

In an array, each cell is typeset as a separate formula. Therefore, the delimiters in each cell are adapted only to the

content of this particular cell. Apparently, it would be quite a complicated task to fix this with \vphantoms. Let’s try to

simply link the delimiters that belong together.

$$ \begin{array}{dsdsdsd}

\lleft {a1} [ Z & - & \sum_k A & × &

\lleft {b1} ( B & + & C^X \rright {b1} ) \rright {a1} ] \\[3ex]

\lleft {a2} [ P & × & \lleft {b2} ( U & + &

\int_R V \rright {b2} ) & - & W^Y \rright {a2} ]

\end{array} $$

[𝑍 − ∑
𝑘

𝐴 × (𝐵 + 𝐶𝑋)]

[𝑃 × (𝑈 + ∫
𝑅

𝑉) − 𝑊𝑌]

A first step, but not the expected result. It seems that we have to look at it more closely and sort out which parts of

which cells actually belong to the same groups. But there is in fact a simple solution that doesn’t require any deeper

thinking or sorting out. We just need to connect the end of each cell to the beginning of the next one. We can do this

by inserting invisible delimiters.

$$ \begin{array}{dsdsdsd}

\lleft[ Z \mright{c1}. & - & \mleft{c1}. \sum_k A \mright{c2}.

& × & \mleft{c2}. \lleft( B \mright{c3}. & + &

\mleft{c3}. C^X \rright ) \rright ] \\[3ex]

\lleft[ P \mright{d1}. & × & \mleft{d1}. \lleft ( U \mright{d2}.

& + & \mleft{d2}. \int_R V \rright ) \mright{d3}. & - &

\mleft{d3}. W^Y \rright ] \end{array} $$

⎡⎢
⎣
𝑍 − ∑

𝑘
𝐴 × (𝐵 + 𝐶𝑋)⎤⎥

⎦

[𝑃 × (𝑈 + ∫
𝑅

𝑉) − 𝑊𝑌]

This is the desired output, but the code starts to look complicated. But it is a simple rule, so there should be a way to

automate it. Can we include the invisible linking delimiters into the cell template? The problem is that we need a unique

tag for each transition from one cell to the next. For this purpose, two macros are provided.

• \pushdelimiter inserts an invisible closing delimiter with an automatically generated unique tag.

• \pulldelimiter inserts an invisible opening delimiter with the previously generated tag.

The generated tags are stored on a stack, so that multiple push and pull operations can be nested. They are globally

unique and survive the current TEX group. If we include the macros into the cell template, they connect each cell to the

next one. We can also define templates that start a new sequence or end the current one. As LuaTEX allows this, let’s

use Greek letters for the beginning, the middle, and the end of a row.
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\newcolumntype{α}{ >{ \displaystyle } c <{ \pushdelimiter } }

\newcolumntype{μ}{ >{ \displaystyle \pulldelimiter } c <{ \pushdelimiter } }

\newcolumntype{ω}{ >{ \displaystyle \pulldelimiter } c }

Now the code is as simple as it was in the beginning. We can just ignore the cell boundaries and write the formula as if

it was a single line in $$s, or whatever single line math environment.

$$ \begin{array}{αsμsμsω}

\lleft [ Z & - & \sum_k A & × &

\lleft ( B & + & C^X \rright ) \rright ] \\[3ex]

\lleft [ P & × & \lleft ( U & + &

\int_R V \rright ) & - & W^Y \rright ]

\end{array} $$

⎡⎢
⎣
𝑍 − ∑

𝑘
𝐴 × (𝐵 + 𝐶𝑋)⎤⎥

⎦

[𝑃 × (𝑈 + ∫
𝑅

𝑉) − 𝑊𝑌]

If you want the formula to continue on the next line with pending delimiters, you can include the push and pull macros

into the line separator as well.

\newcommand\continue[1][0pt]{ \pushdelimiter \\[#1] \pulldelimiter }

$$ \begin{array}{αsμsμsω}

\lleft \{ Z & - & \sum_k \lleft ( A & × &

B^3 \rright ) & + & \continue[3ex]

& + & \lleft ( U & + &

\int_R V \rright ) & - & W^Y \rright \}

\end{array} $$

⎧{
⎨{⎩

𝑍 − ∑
𝑘

(𝐴 × 𝐵3) +

+ (𝑈 + ∫
𝑅

𝑉) − 𝑊𝑌
⎫}
⎬}⎭

A construction like this can also be used with amsmath environments like multiline or split , which require explicit

line breaks to be inserted into long formulas. The longmath environment described in section 4 provides an alternative

method to typeset long formulas without the need to specify the breakpoints manually.

3 Automatic Nesting

It is possible to select the kinds of brackets used as outer delimiters automatically depending on the nesting level. This

might not add much value for formulas that are explicitly written into the document. But it could be useful for semi-

automatically produced formulas, where the author doesn’t have direct control over individual symbols.

The basic idea is to define a collection of delimiter pairs, and let TEX pick them according to the current nesting level.

• \autodelimiters{sample} defines a collection of nested delimiters pairs.

The sample must be an otherwise empty, nested structure of delimiters enclosing an asterisk * as a single object.

\autodelimiters{ \lfloor [ \{ ( * ) \} ] \rceil }

Once this is set up, you can pick one of them by using * as a variable delimiter.

The corrected Sellmann-Yokuzi contribution to the

Johansson Entropy is given by

$$ S^\top = k · \lleft* A + \lleft* B_C +

\lleft* D^E \rright* ^ 2 \rright*

^ { \lleft* 3+κ \rright* ^2 } + F \rright* $$

The corrected Sellmann-Yokuzi contribution to the

Johansson Entropy is given by

𝑆⊤ = 𝑘 · ⎡⎢
⎣
𝐴 + {𝐵𝐶 + (𝐷𝐸)2}

(3+𝜅)2

+ 𝐹⎤⎥
⎦

If the nesting level exceeds the number of sample pairs provided, the outermost pair is repeated.

$$ \lleft* A + \lleft* B + \lleft* C + \lleft*

D + \frac{ \lleft* X + Y \rright* × Z }{ W }

\rright* · E \rright* · F \rright* · G \rright* $$

⌊𝐴 + ⌊𝐵 + [𝐶 + {𝐷 +
(𝑋 + 𝑌) × 𝑍

𝑊 } · 𝐸] · 𝐹⌉ · 𝐺⌉

Automatic delimiters can be mixed with explicit delimiters. When the nesting level is determined, only the * de-

limiters are taken into account. To demonstrate this, let’s choose a different collection and set a negative value for

\delimitershortfall. This makes the bracket size increase linearly with the nesting level.
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\delimitershortfall -2pt

\autodelimiters{ < \lceil \lfloor [ \{ ( * ) \} ] \rfloor \rceil > }

This is what we get with automatic brackets only. The numbers indicate the actually used level.

$$ \lleft* 5 + \lleft* 4 + \lleft* 3

+ \lleft* 2 + \lleft* 1 + A \rright* + B \rright*

+ C \rright* + D \rright* + E \rright* $$

⌈5 + ⌊4 + [3 + {2 + (1 + 𝐴) + 𝐵} + 𝐶] + 𝐷⌋ + 𝐸⌉

If we replace the second level by explicit square brackets, the counting continues at the third level.

$$ \lleft* 4 + \lleft* 3 + \lleft* 2

+ \lleft[ 0 + \lleft* 1 + A \rright* + B \rright]

+ C \rright* + D \rright* + E \rright* $$

⌊4 + [3 + {2 + [0 + (1 + 𝐴) + 𝐵] + 𝐶} + 𝐷] + 𝐸⌋

And here two levels are skipped.

$$ \lleft* 3 + \lleft| 0 + \lleft* 2

+ \lleft[ 0 + \lleft* 1 + A \rright* + B \rright]

+ C \rright* + D \rright| + E \rright* $$

[3 + ∣0 + {2 + [0 + (1 + 𝐴) + 𝐵] + 𝐶} + 𝐷∣ + 𝐸]

In the first experimental version of this packages, there was an interaction between automatic and explicit brackets.

This has been removed. It didn’t work well with linked groups, and it caused problems with bracktes used for purposes

other than grouping, like function arguments, binomial coeffiecients etc.

If automatic delimiters are tagged and aligned, this also applies to the chosen delimiter from the collection. Here is a

typical example. Without tagging, we get this.

$$ \lleft * \frac{ n+1 }{ n^2 } \rright * ^2

+ \lleft * \frac{ n }{ \lleft * n - 1 \rright *^2 }

\rright * ^2 $$

(
𝑛 + 1

𝑛2 )
2

+ {
𝑛

(𝑛 − 1)2 }
2

If the outer brackets are aligned, both become second level brackets.

$$ \lleft {qx} * \frac{ n+1 }{ n^2 } \rright * ^2

+ \lleft {qx} * \frac{ n }{ \lleft * n - 1 \rright *^2}

\rright * ^2 $$

{
𝑛 + 1

𝑛2 }
2

+ {
𝑛

(𝑛 − 1)2 }
2

As a last challenge, let’s consider the array from the previous section with a slight modification. If we replace all brackets

with automatic delimiters, but do not link the cells, we get this.

$$ \begin{array}{dsdsdsd}

\lleft * Z & - & \sum_k A & × &

\lleft * B & + & C^X \rright * \rright * \\[3ex]

\lleft * P & × & \lleft * \lleft * U^2 \rright * & + &

\int_R V \rright * & - & W^Y \rright *

\end{array} $$

(𝑍 − ∑
𝑘

𝐴 × (𝐵 + 𝐶𝑋)}

(𝑃 × {(𝑈2) + ∫
𝑅

𝑉) − 𝑊𝑌)

As expected, only the brackets within each cell are set up properly, but with no relation to those in the other cells. If we

use the version with linked cells, we get the intended result.

$$ \begin{array}{αsμsμsω}

\lleft * Z & - & \sum_k A & × &

\lleft * B & + & C^X \rright * \rright * \\[3ex]

\lleft * P & × & \lleft * \lleft * U^2 \rright * & + &

\int_R V \rright * & - & W^Y \rright *

\end{array} $$

⎧{
⎨{⎩

𝑍 − ∑
𝑘

𝐴 × (𝐵 + 𝐶𝑋)
⎫}
⎬}⎭

[𝑃 × {(𝑈2) + ∫
𝑅

𝑉} − 𝑊𝑌]
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4 Multi Line Formulas

Unlike the TEX primitives, the longmath macros do not create a subformula that cannot be broken into lines. In inline

math mode, long formulas with delimiter groups can extend over several lines just like ordinary text.

\newcommand\polyA{ x^{10} + x^9 - x^8 + 2 x^6 + 9 x^5 + 2 x^4 - 4 x^3 - 2 x^2 + 6 x + 4 }

\newcommand\polyB{ x^4 - x^3 + x + 2 } \newcommand\polyC{ x^6 + 2 x^5 + x^4 - 2 x^2 + 2 x + 2 }

Factorising the polynomial

$ P\lleft( \polyA \rright) $

gives $ P \lleft( \polyB \rright)

· P \lleft( \polyC \rright) $.

Factorising the polynomial 𝑃(𝑥10 +𝑥9 −𝑥8 +2𝑥6 +9𝑥5 +2𝑥4 −
4𝑥3 − 2𝑥2 + 6𝑥 + 4) gives 𝑃(𝑥4 − 𝑥3 + 𝑥 + 2) · 𝑃(𝑥6 + 2𝑥5 +
𝑥4 − 2𝑥2 + 2𝑥 + 2).

There is no interference between nested delimiter groups and logical TEX groups. Delimiters can be placed deep inside

\begingroup-\endgroup constructs, and they do not create such groups themselves. The following example uses the

multido package. It wouldn’t work with \left, \right and \middle.

Applying the Hofstadt Zebelajev theorem, we conclude that

$ \lleft( \hat A_0

\multido{\i=1+1}{10}{ \mmbin \uparrow \hat A_{\i} }

\rright) \in \lleft[\mathcal{H}^\infty\rright]^{11}$.

Applying the Hofstadt Zebelajev theorem, we

conclude that ( ̂𝐴0 ↑ ̂𝐴1 ↑ ̂𝐴2 ↑ ̂𝐴3 ↑ ̂𝐴4 ↑ ̂𝐴5 ↑
̂𝐴6 ↑ ̂𝐴7 ↑ ̂𝐴8 ↑ ̂𝐴9 ↑ ̂𝐴10) ∈ [ℋ∞]11

.

For multi line formulas in display mode, longmath provides a special environment.

• \begin{longmath}[align]{width} begins a multi line expression in display mode.

• \end{longmath} ends a multi line expression in display mode.

It works like the minipage environment. You have to specify the width of the box the formula will by placed into, and

how to align it vertically with the rest of the displayed equation. The optional alignment argument is either c for centre,

which is the default, or t for top or b for bottom.

\newcommand\harm[2]{ \frac{1}{#1} \mmultido{\n=#1+1}{#2}{ + \frac{1}{\n} } }

The harmonic series starts with

$$ Q = \begin{longmath}[t]{70mm}

1 + \harm{2}{21} + \cdots

\end{longmath} $$

and diverges very slowly.

The harmonic series starts with

𝑄 = 1 +
1
2 +

1
3 +

1
4 +

1
5 +

1
6 +

1
7 +

1
8 +

1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16 +

1
17 +

1
18 +

1
19 +

1
20 +

1
21 +

1
22 +

1
23 + ⋯

and diverges very slowly.

No markers are needed to force line breaks at particular points. TEX’s line breaking algorithm is used to find the “best”

breakpoints. If you’re familiar with it, you can insert penalties into the formula to optimize it.

The width can be specified either as an absolute dimension or as fraction of the available width of the display.

One can easily prove that

$$ \begin{longmath}[b]{0.7}

1 + \harm{2}{21} + \cdots

\end{longmath} \to \infty, $$

which comes as a surprise for some students.

One can easily prove that

1 +
1
2 +

1
3 +

1
4 +

1
5 +

1
6 +

1
7 +

1
8 +

1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16 +

1
17 +

1
18 +

1
19 +

1
20 +

1
21 +

1
22 +

1
23 + ⋯ → ∞,

which comes as a surprise for some students.

As formulas typically have fewer possible breakpoints than ordinary text, no attempt is made to justify the lines. Instead,

some flexible glue is inserted at both sides of each line to avoid extreme stretching or shrinking. Only the beginning of
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the first line and the end of the last line are forced to align with the boundary of the box specified by thewidth parameter.

If the whole formula fits into a single line, a box with only the required width is created. This ensures that, regardless

of the number of lines, a top aligned longmath box always aligns neatly with an expression to the left, and the formula

in a bottom aligned longmath box can be continued to the right.

Since the longmath environment creates a vertical box, you can have several of them in a single display.

$$ \lleft[ \begin{longmath}[c]{0.33}

\polyA

\end{longmath} \rright] =

\lleft[ \begin{longmath}[c]{0.33}

\lleft( \polyB \rright) \cdot

\lleft( \polyC \rright)

\end{longmath} \rright] $$

⎡⎢⎢
⎣

𝑥10 + 𝑥9 − 𝑥8 +
2𝑥6 + 9𝑥5 + 2𝑥4 −
4𝑥3 − 2𝑥2 + 6𝑥 + 4

⎤⎥⎥
⎦

=
⎡
⎢
⎢
⎣

(𝑥4 − 𝑥3 + 𝑥 + 2) ⋅
(𝑥6 + 2𝑥5 +

𝑥4 − 2𝑥2 + 2𝑥 + 2)

⎤
⎥
⎥
⎦

To make this look a bit nicer, you can add some extra space to the width of the box and arrange the lines from the top

left to the bottom right. If the width parameter is given as linewidth+extrawidth, the lines are stacked so that the total

width of the box is the sum of linewidth and extrawidth. Both values can be given as absolute dimensions or as fractions

of the total display width.

$$ \lleft[ \begin{longmath}[c]{0.33+0.07}

\polyA

\end{longmath} \rright] =

\lleft[ \begin{longmath}[c]{0.33+0.07}

\lleft( \polyB \rright) \cdot

\lleft( \polyC \rright)

\end{longmath} \rright] $$

⎡⎢⎢
⎣

𝑥10 + 𝑥9 − 𝑥8 +
2𝑥6 + 9𝑥5 + 2𝑥4 −

4𝑥3 − 2𝑥2 + 6𝑥 + 4

⎤⎥⎥
⎦

=
⎡
⎢
⎢
⎣

(𝑥4 − 𝑥3 + 𝑥 + 2) ⋅
(𝑥6 + 2𝑥5 +

𝑥4 − 2𝑥2 + 2𝑥 + 2)

⎤
⎥
⎥
⎦

A longmath box can replace any kind of subformula. Just specify the maximal width the subformula is allowed to have.

If it fits into this width, it will be typeset normally. Otherwise, it is split into several lines.

$$ \frac{ \begin{longmath}{40mm+10mm} \polyA \end{longmath} }

{ \begin{longmath}{40mm+10mm} \polyB \end{longmath} }

= \begin{longmath}{40mm+10mm} \polyC \end{longmath} $$

𝑥10 + 𝑥9 − 𝑥8 + 2𝑥6 + 9𝑥5 +
2𝑥4 − 4𝑥3 − 2𝑥2 + 6𝑥 + 4
𝑥4 − 𝑥3 + 𝑥 + 2

= 𝑥6 + 2𝑥5 + 𝑥4 − 2𝑥2 + 2𝑥 + 2

\newcommand\polyX{ x^5 - x^4 + x^3 - x^2 + x - 1 }

\newcommand\polyY{ x^{10} - 2 x^9 + 3 x^8 - 4 x^7 + 5 x^6 - 6 x^5 + 5 x^4 - 4 x^3 + 3 x^2 - 2 x + 1 }

$$ \sqrt{ \begin{longmath}{40mm+10mm} \polyY \end{longmath} }

= \begin{longmath}{40mm+10mm} \polyX \end{longmath} $$

√𝑥10 − 2𝑥9 + 3𝑥8 − 4𝑥7 + 5𝑥6 −
6𝑥5 + 5𝑥4 − 4𝑥3 + 3𝑥2 − 2𝑥 + 1

= 𝑥5 − 𝑥4 + 𝑥3 − 𝑥2 + 𝑥 − 1

There is also a smarter longmath* environment, which sets the width of the box “intelligently”, so that the formula is

split into equally long segments and the available space is used efficiently. The idea is to specify a maximal width, then

let TEX find the number of lines needed, and adapt the width to the total length divided by the number of lines. This will

usually result in a box that is slightly shorter than the given width.

Whether this really succeeds depends on a sufficient number of possible breakpoints and stretchable and shrinkable

glue in the formula, so that TEX’s algorithm can actually split it into equally long parts. Take it with a grain of salt and

don’t mind if it doesn’t work properly in difficult cases. As an example, here is what we get without this feature.
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To prove it, observe that each bracket is larger than $\frac 12$:

$$ \lleft\{ \begin{longmath}[c]{0.8+0.1}

\lleft( 1 + \frac{1}{2} \rright) + \lleft( \harm{3}{1} \rright) + \lleft( \harm{5}{3} \rright) +

\lleft( \harm{9}{7} \rright) + \lleft( \harm{17}{15} \rright) + \lleft( \harm{33}{3}

+ \cdots \rright. \end{longmath} \rright\} $$

To prove it, observe that each bracket is larger than
1
2 :

⎧{{{{{
⎨{{{{{⎩

(1 +
1
2) + (

1
3 +

1
4) + (

1
5 +

1
6 +

1
7 +

1
8) + (

1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16) + (

1
17 +

1
18 +

1
19 +

1
20 +

1
21 +

1
22 +

1
23 +

1
24 +

1
25 +

1
26 +

1
27 +

1
28 +

1
29 +

1
30 +

1
31 +

1
32) + (

1
33 +

1
34 +

1
35 +

1
36 + ⋯

⎫}}}}}
⎬}}}}}⎭

If we replace longmath by longmath*, but stick to the same width specification, we get this.

There is even a slightly “shorter” proof:

⎧{{{{{
⎨{{{{{⎩

(1 +
1
2) + (

1
3 +

1
4) + (

1
5 +

1
6 +

1
7 +

1
8) + (

1
9 +

1
10 +

1
11 +

1
12 +

1
13 +

1
14 +

1
15 +

1
16) + (

1
17 +

1
18 +

1
19 +

1
20 +

1
21 +

1
22 +

1
23 +

1
24 +

1
25 +

1
26 +

1
27 +

1
28 +

1
29 +

1
30 +

1
31 +

1
32) + (

1
33 +

1
34 +

1
35 +

1
36 + ⋯

⎫}}}}}
⎬}}}}}⎭

The spacing between the lines is controlled by a dimension register that can be adjusted.

• \longmathlinesep dimension to be added to the line skip in the longmath environment (default 3.0pt).

This dimension is added to the current \baselineskip and \lineskip when the content of the box is split into lines and

placed in a vertical box, basically using TEX’s \openup macro. Some additional effort is made to adjust the line spacing

if the longmath environment is placed in a sub- or superscript as in this final example.

$$ \Omega = \lleft| \begin{longmath*}[c]{0.6+0.1}

\mathscr{Q} + \lleft[ \lleft( T · H · I^{\lleft(a+b\rright)^4} · S \rright)

+ I · S + A + \lleft\{ V · E^{\lleft(a^2+2ab+b^2\rright)^2} · R · Y + L · O · N · G

+ \lleft[ \int\limits_I^N T · \lleft( E^{G^R} \rright) · A_L \rright]

- \frac{ D^I · V^I }{ D · E · D } \mmbin / \lleft\{ B · Y

+ A × \sum\limits_{-\infty}^{\infty} O^F \lleft< S^c_a L^a_r \mmiddle | \prod\nolimits^s \rright>

\rright\} \rright\} \rright] + C^\infty \end{longmath*} \rright|

^ { \lleft( \begin{longmath*}[c]{25mm+5mm} a+b+c+d+e+f+g+h+i+j+k+l+m \end{longmath*} \rright) } $$

Ω =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

𝒬 + [(𝑇 · 𝐻 · 𝐼(𝑎+𝑏)4
· 𝑆) + 𝐼 · 𝑆 + 𝐴 + {𝑉 · 𝐸(𝑎2+2𝑎𝑏+𝑏2)2

·

𝑅 · 𝑌 + 𝐿 · 𝑂 · 𝑁 · 𝐺 + [
𝑁
∫
𝐼

𝑇 · (𝐸𝐺𝑅) · 𝐴𝐿] −

𝐷𝐼 · 𝑉𝐼

𝐷 · 𝐸 · 𝐷 / {𝐵 · 𝑌 + 𝐴 ×
∞
∑
−∞

𝑂𝐹⟨𝑆𝑐
𝑎𝐿𝑎

𝑟 ∣ ∏
𝑠
⟩}}] + 𝐶∞

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(
𝑎+𝑏+𝑐+𝑑+𝑒+𝑓 +

𝑔+ℎ+𝑖+𝑗+𝑘+𝑙+𝑚
)
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