
The lua-regression package
George Allison∗

v1.0.2
April 17, 2025

Abstract

The lua-regression package is a LuaLATEX package that provides a simple interface for
performing polynomial regression on data sets. It allows users to specify the order of the polyno-
mial regression, the columns of the data set to use, and whether to plot the results. The package
also includes options for calculating and plotting the confidence intervals of the data.

Keywords: LuaLaTeX, regression, plotting, data analysis

Contents
1 What is lua-regression? 3

1.1 About . 3
1.2 Features . 3
1.3 Acknowledgements . 4

2 Installation 4
2.1 Requirements . 4
2.2 Install lua-regression . 4

3 Todo 4

4 Usage 5
4.1 Calling the Package . 5

∗mailto:GHAllison1@sheffield.ac.uk

1

mailto:GHAllison1@sheffield.ac.uk

5 Package Performance 5
5.1 Calculation Performance . 7

5.1.1 Performance on 80 row data set . 7
5.1.2 Performance on 400 row data set . 7

5.2 Plotting Performance . 7
5.2.1 Performance on 80 row data set . 7
5.2.2 Performance on 400 row data set . 7

6 How lua-regression works 7
6.1 Polyfitting . 7
6.2 Confidence Intervals . 8
6.3 R2 Calculation . 9

7 Example 10
7.1 A linear regression of order 1 . 11
7.2 A polynomial regression of order 2 . 13

8 Changelog 15

9 Code 16

2

1 What is lua-regression?
The lua-regression package is a LuaLATEX package that provides a simple interface for performing
polynomial regression on data sets within LATEX. For example:

\luaregression[plot=true, order=2, xcol=1, ycol=2]{data.csv}

The above code will perform a polynomial regression of order 2 on the data in the file data.csv,
using the first column as the x-values and the second column as the y-values. The plot result will
only work in a tikzpicture environment.

1.1 About

The main functions of the lua-regression package are written purely in Lua and integrated into
LATEX via LuaLATEX. This code was written to provide a LATEX consistent interface for performing
polynomial regression on data sets, without the need for external software or libraries. Additionally,
keeping styling consistent too.
The package uses the Lua programming language to perform the regression calculations, and it can
be easily integrated into existing LATEX documents using the LuaLATEX engine. Currently, if you wish
to perform a more than a basic linear regression on a data set, you must use an external program
to perform the regression and then import the results or pgf file into LATEX or run a converter script
like tikzplotlib or matlab2tikz. This requires extra steps and can be unnecessarily complicated
to maintain styling. Even the native linear regression available in pgfplots can feel to verbose.
The lua-regression package aims to simplify this process by providing a simple interface, or single
command, for performing polynomial regression directly within LATEX. The target audience for this
package is primarily, students, researchers, and academics who are already working in LATEX and
need to perform polynomial regression on data sets as part of their work. The package is designed
to be easy to use and flexible, allowing users to specify the order of the polynomial regression, the
columns of the data set to use, and whether to plot the results. The package also includes options
for confidence intervals, making it a powerful tool for data analysis and visualization that creates
plots similar to those produced by the Python library Seaborn.
Using Lua allows for a clearer and more efficient implementation of the regression calculations, as
well as better integration with LATEX thanks to LuaLATEX. It further benefits from not requiring
any external dependencies outside of LATEX, or the need to use --shell-escape to run.

1.2 Features

Currently, the lua-regression package supports the following features:

• Polynomial regression of any order.

• Plotting of the regression results using PGFplots.

• Confidence intervals and error bands using the bootstrap method.

• Simple interface for specifying data sets and options.

• No external dependencies or shell-escape required.

• Support for CSV format data files.

3

https://github.com/JasonGross/tikzplotlib
https://github.com/matlab2tikz/matlab2tikz

• Perform 𝑅2 tests on the data.

• Support for significant figures.

• Add and remove equation and 𝑅2 from the legend.

• Outputs equations and 𝑅2 values to LATEX commands, so they can be called in the document.

1.3 Acknowledgements

Steve Smith., for introducing me to LATEX.
Rob S., for constant encouragement and moral support.
Max K., for providing feedback on the package and its features.

2 Installation

2.1 Requirements

The lua-regression package requires compilation with LuaLATEX. It has been tested on Lua 5.2
and higher. Further some additional packages are required:

• ifthen

• pfgkeys

• luacode

• pgfplots

• tikz

The packages pgfplots and tikz are not strictly required for running the package. However, they
are needed for drawing the generated equations or confidence intervals on the plot.

2.2 Install lua-regression

The package manager for your local TeX distribution should install the package fine. However, the
package can also be downloaded independently, from the central or main repository, and placed in
your local texmf directory.
Once you have a copy of lua-regression installed, include the following in your preamble:

\usepackage{lua-regression}

3 Todo
There are probably bugs and use cases that I have not thought of. This code was originally written
for my own use, and I have not tested it on all possible data sets. Thus, it only includes the features
I needed at the time of writing. Future enhancements to lua-regression may include:

• Support for other regression types (e.g., exponential, etc.).

• Improved error handling and debugging options.

• More advanced plotting options and customization.

• Support for other data formats (e.g., JSON, XML, etc.).

4

• Robust regression methods.

• Support for plotting multiple regression lines with one command.

• Restructuring the code to be more modular and easier to maintain.

• Improved performance.

• Expand statistical visualisations if not already available in pgfplots, with Seaborn as a baseline.

• Improve bootstrap method/offer alternative bootstrap methods, like Bias-Corrected and Ac-
celerated (BCa) or Studentised Bootstrap-t.

4 Usage

4.1 Calling the Package

IN
FO It should be noted that Lua indexes at 1 and therefore when specifying x and y columns

you should treat the first column as index 1.

IN
FO Current lua-regression only takes data in long format.

The lua-regression package is called using the following command:

\luaregression[options]{data.csv}

The options for lua-regression are seen in table 1.
Additionally, specific values from the package can be called in the document using the commands
found in table 2.
These can be called in the document at any point after the lua-regression command.

5 Package Performance
The lua-regression package has not been extensively tested on large data sets and no promises
of performance can be made. However, Lua is a fast and generally efficient language that should
perform well on most data sets with minimal impact to compilation speed. There are probably
improvements that can be made.
I have run some tests below on standard data to get a gauge of general performance. Tests were
run on the following hardware:

• R9 5950X, 32GB 3200 MHz

• TeXLive 2025

• Python 3.11

5

https://seaborn.pydata.org/

Option Description Type Default
xcol The column index for the x-values integer 1

ycol The column index for the y-values integer 2

ci Whether to include confidence intervals boolean false

z-threshold The Z-score threshold for confidence intervals number null

sig-figures The number of significant figures to display integer 4

order The order of the polynomial regression integer 1

plot Whether to plot the results boolean false

pgf-options Additional PGF options for plotting string mark=none,smooth

eq
Whether to show the equation in the plot
legend boolean false

r2
Whether to show the R² value in the plot
legend boolean false

debug Whether to enable debug mode boolean false

bootstrap
The number of bootstrap samples for
confidence intervals integer 1000

cicolor The color for the confidence interval fill string blue

cifillopacity The opacity for the confidence interval fill number 0.2

Table 1: Options for the lua-regression package.

\polyR The 𝑅2 value of the regression.
\polyeq The polynomial equation of the regression in a format pgfplots can interpret.
\printeq The polynomial equation of the regression in a visually nice format.
\qlwr The points for the lower confidence interval.
\qupr The points for the upper confidence interval.

Table 2: Available commands from lua-regression in LaTeX document

6

5.1 Calculation Performance

For the following test, no plotting was performed to measure just the speed of calculation indepen-
dently of PGFplots plotting speed. As can be seen lua-regression is highly performant. Tests
below were performed with plotting on using the following code:

\luaregression[order=2, xcol=1, ycol=2]{data.csv}

5.1.1 Performance on 80 row data set

A test of the package took approximately 0.0025 seconds to run.

5.1.2 Performance on 400 row data set

A test of the package took approximately 0.00551 seconds to run.

5.2 Plotting Performance

Plotting performance is noticeably slow as data set size increases however this is more related to
PGFplots than anything in lua-regression as this behaviour is present without the package. Tests
below were performed with plotting on using the following code:

\luaregression[plot=true, order=2, xcol=1, ycol=2]{data.csv}

5.2.1 Performance on 80 row data set

For example a test took approximately 0.786 seconds to plot.
The comparative Python code took approximately 0.533 seconds to plot.

5.2.2 Performance on 400 row data set

A test took approximately 1.99 seconds to plot.
The comparative Python code took approximately 0.265 seconds to plot.

6 How lua-regression works
As previously mentioned lua-regression attempts not to have external dependencies for main
functionality (aside from reasonable standard LATEX packages see section 2.1). Therefore, the main
brains for the code is Lua based.

6.1 Polyfitting

The lua-regression package uses the least squares method to perform polynomial regression on
the data set. The least squares method is a mathematical optimization technique that minimizes
the sum of the squares of the differences between the observed values and the values predicted by
the model. The polynomial regression model can be represented as:

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 +…+ 𝑎𝑛𝑥𝑛 (1)
Where:

7

• 𝑦 is the dependent variable.

• 𝑥 is the independent variable.

• 𝑎0 is the intercept.

• 𝑎1, 𝑎2, …, 𝑎𝑛 are the coefficients of the polynomial.

• 𝑛 is the order of the polynomial.

As mentioned coefficients are calculated using the least squares method. The coefficients are calcu-
lated using the following formula:

𝑎 = (𝑋𝑇𝑋)−1 𝑋𝑇𝑦 (2)

Where:

• 𝑎 is the vector of coefficients.

• 𝑋 is the matrix of independent variables.

• 𝑦 is the vector of dependent variables.

• 𝑇 is the transpose operator.

The matrix 𝑋 is constructed by adding a column of ones to the data set, which represents the
intercept term. The matrix 𝑋 is then raised to the power of the order of the polynomial, and the
coefficients are calculated using the above formula. The coefficients are then used to calculate the
predicted values of the dependent variable, which can be plotted against the observed values to
visualize the fit of the model.

6.2 Confidence Intervals

The lua-regression package uses the normal approximation bootstrap method to calculate confi-
dence intervals for the polynomial regression. The bootstrap method is a resampling technique that
involves repeatedly sampling from the data set with replacement to create multiple bootstrap sam-
ples. The polynomial regression is then performed on each bootstrap sample, and the coefficients are
calculated for each sample. The confidence intervals are then calculated by taking the percentiles
of the coefficients from the bootstrap samples. The confidence intervals can be represented as:

𝐶𝐼 = [𝑎𝑖 − 𝑧𝛼/2 ⋅ 𝑆𝐸(𝑎𝑖), 𝑎𝑖 + 𝑧𝛼/2 ⋅ 𝑆𝐸(𝑎𝑖)] (3)

Where:

• 𝐶𝐼 is the confidence interval.

• 𝑎𝑖 is the estimated coefficient for the 𝑖-th term of the polynomial.

• 𝑧𝛼/2 is the critical value from the standard normal distribution for a given significance level
𝛼.

• 𝑆𝐸(𝑎𝑖) is the standard error of the estimated coefficient.

8

The standard error of the estimated coefficient is calculated using the following formula:

𝑆𝐸(𝑎𝑖) = √
1

𝑛 − 1

𝑛
∑
𝑗=1

(𝑦𝑗 − 𝑦𝑗)
2 (4)

Where:

• 𝑛 is the number of observations in the data set.

• 𝑦𝑗 is the observed value for the 𝑗-th observation.

• 𝑦𝑗 is the predicted value for the 𝑗-th observation.

The confidence intervals are then plotted on the graph to show the range of values within which
the true coefficients are likely to fall. The confidence intervals can be used to assess the uncertainty
of the estimated coefficients and to determine whether the coefficients are statistically significant.
The confidence intervals are plotted as shaded areas around the fitted polynomial regression line,
and they provide a visual representation of the uncertainty in the model.

6.3 R2 Calculation

The lua-regression package calculates the R2 value for the polynomial regression using the fol-
lowing formula:

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2

∑𝑛
𝑖=1 (𝑦𝑖 − ̄𝑦)2

(5)

Where:

• 𝑅2 is the coefficient of determination.

• 𝑦𝑖 is the observed value for the 𝑖-th observation.

• 𝑦𝑖 is the predicted value for the 𝑖-th observation.

• ̄𝑦 is the mean of the observed values.

• 𝑛 is the number of observations in the data set.

9

7 Example
The following example demonstrates how to use the lua-regression package to perform polynomial
regressions on a data set and plot the results. The data set used in this example is a CSV file from
the Seaborn-data Github repository, which contains information about the miles per gallon (MPG)
of various cars.

\luaregression[xcol = 4, ycol = 5,
order = 1]{example/mpg.csv}↪

The equation for the linear
regression for the MPG data set
is \printeq and the R^2
value is \polyR.

↪

↪

↪

The equation for the linear regression for
the MPG data set is 19.0782𝑥 + 984.5003
and the 𝑅2 value is 0.7474.

10

https://github.com/mwaskom/seaborn-data

7.1 A linear regression of order 1

The following code performs a polynomial regression of order 1 on the MPG data set, using the
first column as the x-values and the second column as the y-values. Seen in figure 1.

\begin{tikzpicture}
\begin{axis}[

height=6.45cm,
width=\textwidth,
domain=0:300,
samples=1000,
xmin=25,
xmax=240,
xlabel=horsepower,
ytick={},
xtick={},
ymax=6000,
ymin=1250,
ylabel=weight,
grid=both,
legend columns = 2,
legend style={cells={align=left},at={(0.45,-0.22)},anchor=north},
legend cell align=left,
major grid style={line width=.2pt,draw=gray!20},
every axis/.append style={axis line style={gray!80, line

width=0.75pt}, tick style={gray!95}}↪

]

\addlegendimage{p4, mark=*, thick}
\addlegendimage{p8, thick}

\pgfplotstableread[col sep=comma]{example/mpg.csv}\datatable

\addplot [p4,mark=*,fill opacity=0.75, draw opacity=0] table [only
marks,col sep=comma,x=horsepower,y=weight]{\datatable};↪

\luaregression[xcol = 4, ycol = 5, plot = true, eq = true, r2 = true,
order = 1, ci = true]{example/mpg.csv}↪

\end{axis}
\end{tikzpicture}

11

40 60 80 100 120 140 160 180 200 220 240

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

horsepower

w
ei
gh

t

𝑦 = 19.0782𝑥 + 984.5003
𝑅2 = 0.7474

Figure 1: Polynomial regression of order 1 on the MPG data set. The plot shows the data points,
the fitted polynomial regression line, and the confidence intervals.

12

7.2 A polynomial regression of order 2

The following example demonstrates how to use the lua-regression package to perform polynomial
regression of order 2 on the same data set. Seen in figure 2.

\begin{tikzpicture}
\begin{axis}[

height=6.45cm,
width=\textwidth,
domain=0:300,
samples=1000,
xmin=25,
xmax=240,
xlabel=horsepower,
ytick={},
xtick={},
ymax=6000,
ymin=1250,
ylabel=weight,
grid=both,
legend columns = 2,
legend style={cells={align=left},at={(0.45,-0.22)},anchor=north},
legend cell align=left,
major grid style={line width=.2pt,draw=gray!20},
every axis/.append style={axis line style={gray!80, line

width=0.75pt}, tick style={gray!95}}↪

]

\addlegendimage{p4, mark=*, thick}
\addlegendimage{p8, thick}

\pgfplotstableread[col sep=comma]{example/mpg.csv}\datatable

\addplot [p4,mark=*,fill opacity=0.75, draw opacity=0] table [only
marks,col sep=comma,x=horsepower,y=weight]{\datatable};↪

\luaregression[xcol = 4, ycol = 5, plot = true, eq = true, r2 = true,
order = 2, ci = true]{example/mpg.csv}↪

\end{axis}
\end{tikzpicture}

13

40 60 80 100 120 140 160 180 200 220 240

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

6,000

horsepower

w
ei
gh

t

𝑦 = −0.0862𝑥2 + 40.6769𝑥 − 203.7982
𝑅2 = 0.7812

Figure 2: Polynomial regression of order 2 on the MPG data set. The plot shows the data points,
the fitted polynomial regression line, and the confidence intervals.

14

8 Changelog

v1.0.2

• Solves the bug with multiple CI plots have the same options regardless of what has been set.

v1.0.1

• Added required package ifthen.

v1.0.0

• Initial release of the lua-regression package.

• Basic polynomial regression functionality.

• Plotting support using PGFPlots.

• Confidence intervals and error bands using the bootstrap method.

• Simple interface for specifying data sets and options.

• No external dependencies or shell-escape required.

• Support for CSV format data files.

• Perform 𝑅2 tests on the data.

• Support for significant figures.

• Add and remove equation and 𝑅2 from the legend.

• Outputs equations and 𝑅2 values to LaTeX commands so they can be called in the document.

15

9 Code
22 \ProvidesPackage{lua-regression}[2025/04/17 1.0.2 Lua Regression Plotting

project]↪

23

24 \RequirePackage{ifthen}
25 \ifluatex
26 \RequirePackage{luacode}
27 \else
28 {\PackageError{lua-regression}
29 {Not running under LuaLaTeX}
30 {This package requires LuaLaTeX. Try compiling this document with\MessageBreak

'lualatex' instead of 'latex'. This is a fatal error; I'm aborting now.}%↪

31 }\stop
32 \fi
33

34 % Required packages
35 \RequirePackage{pgfkeys}
36 \RequirePackage{pgfplots}
37 \usepgfplotslibrary{fillbetween}
38

39 % Define the key-value options
40 \pgfkeys{
41 /luaregression/.is family, /luaregression,
42 default/.style = {
43 xcol=1, % Default x-column index
44 ycol=2, % Default y-column index
45 ci=false, % Default: no error band
46 z-threshold=null, % Default Z-score threshold
47 sig-figures=4, % Default significant figures
48 order=1, % Default polynomial order
49 plot=false, % Default plotting behavior
50 pgf-options={mark=none,smooth}, % Default PGF options
51 eq=false, % Toggle for showing the equation
52 r2=false, % Toggle for showing R²
53 debug=false, % Debug toggle for csv
54 bootstrap=1000, % Number of bootstrap samples for confidence intervals
55 cicolor=blue, % CI fill color
56 cifillopacity=0.2, % CI fill opacity
57 },
58 xcol/.estore in = \luaregressionxcol,
59 ycol/.estore in = \luaregressionycol,
60 ci/.estore in = \luaregressionci,
61 z-threshold/.estore in = \luaregressionzthreshold,
62 sig-figures/.estore in = \luaregressionsigfigures,
63 order/.estore in = \luaregressionorder,
64 plot/.estore in = \luaregressionplot,
65 pgf-options/.estore in = \luaregressionpgfoptions,
66 eq/.estore in = \luaregressionshowequation,

16

67 r2/.estore in = \luaregressionshowrsquare,
68 debug/.estore in = \luaregressiondebug,
69 bootstrap/.estore in = \luaregressionbootstrapsamples,
70 cicolor/.estore in = \luaregressioncicolor,
71 cifillopacity/.estore in = \luaregressioncifillopacity,
72 }
73

74 % Define the macro
75 \newcommand{\luaregression}[2][]{%
76 \pgfkeys{/luaregression, default, #1}% Parse the options
77 \directlua{
78 require("lua-regression")
79 process_data_with_options(
80 "#2",
81 {
82 ["xcol"] = tonumber("\luaregressionxcol"),
83 ["ycol"] = tonumber("\luaregressionycol"),
84 ["z_threshold"] = tonumber("\luaregressionzthreshold"),
85 ["sig_figures"] = tonumber("\luaregressionsigfigures"),
86 ["ci"] = ("\luaregressionci" == "true"),
87 ["order"] = tonumber("\luaregressionorder"),
88 ["debug"] = ("\luaregressiondebug" == "true"),
89 ["bootstrap_samples"] =

tonumber("\luaregressionbootstrapsamples"),↪

90 }
91)
92 }%
93 \ifthenelse{\equal{\luaregressionplot}{true}}{%
94 \ifx\addplot\undefined
95 \PackageError{lua-regression}{'plot=true' requires a tikzpicture

environment and pgfplots}%↪

96 {Use '\\begin{tikzpicture} ... \\end{tikzpicture}' with
'\\usepackage{pgfplots}'.}%↪

97 \fi
98 \expandafter\addplot\expandafter[\luaregressionpgfoptions] {\polyeq};%
99 % Plot confidence band if ci=true

100 \ifthenelse{\equal{\luaregressionci}{true}}{%
101 \begingroup
102 \edef\luareg@ci@addplot{%
103 \noexpand\addplot[fill=\luaregressioncicolor,fill

opacity=\luaregressioncifillopacity] fill between[of=quprpath and
qlwrpath];%

↪

↪

104 }
105 \addplot[name path=qlwrpath,draw=none] coordinates {\qlwr};
106 \addplot[name path=quprpath,draw=none] coordinates {\qupr};
107 \luareg@ci@addplot
108 \endgroup
109 }{}%

17

110 % Construct the legend entry dynamically
111 \begingroup
112 \def\legendentry{}%
113 \ifthenelse{\equal{\luaregressionshowequation}{true}}{%
114 \edef\legendentry{$y = \printeq$}%
115 }{}%
116 \ifthenelse{\equal{\luaregressionshowrsquare}{true}}{%
117 \ifx\legendentry\empty
118 \edef\legendentry{$R^2 = \polyR$}%
119 \else
120 \edef\legendentry{\legendentry\\$R^2 = \polyR$}%
121 \fi
122 }{}%
123 \ifx\legendentry\empty
124 \else
125 \expandafter\addlegendentry\expandafter{\legendentry}%
126 \fi
127 \endgroup
128 }{}%
129 }

18

	What is lua-regression?
	About
	Features
	Acknowledgements

	Installation
	Requirements
	Install lua-regression

	Todo
	Usage
	Calling the Package

	Package Performance
	Calculation Performance
	Performance on 80 row data set
	Performance on 400 row data set

	Plotting Performance
	Performance on 80 row data set
	Performance on 400 row data set

	How lua-regression works
	Polyfitting
	Confidence Intervals
	R2 Calculation

	Example
	A linear regression of order 1
	A polynomial regression of order 2

	Changelog
	Code

