
luatbls
Create, modify, and use Lua tables from within LaTeX

Kale Ewasiuk (kalekje@gmail.com)

2025–02–14

Introduction

This package provides a Lua-table interface based on the luakeys package:
https://mirror.quantum5.ca/CTAN/macros/luatex/generic/luakeys/luakeys.pdf

A global table called luatbls is created by loading this package. This table contains all user-defined
tables as well as internal package functions and settings. User tables are stored directly under the mod-

ule’s table, so you can access a table within Lua by using: luatbls['mytable'] or luatbls.mytable.
Further, luatbls can be called directly to obtain a table item by luatbls'i', where i is a “flexible”
indexing system discussed in the next paragraphs.

If you want to change the luakeys global parser options, you can adjust them by:
\directlua {luatbls._luakeys.opts.OPTION = VALUE}
For debugging, set \directlua {luatbls._debug = true}

In this documentation, arguments are represented as follows:

t : table name. If none provided, the most recent is used.
k : a string key.
n : an integer index.
v : a value.
i : the flexible indexer to get a single item.
I : the flexible indexer to get a single or multiple items.

keyval : a key-value string for the table. Standalone values are set to boolean.
csv : a key-value string where standalone values are parsed as array-like.
opts : options for luakeys.parse().

cstemp : a template for command-sequences, lengths, or toggles. By default is ltbl<t><k>.

There are a few ways to use the index (placeholder i).
t.kwhere t is the table name and k is a string key (i.e. uses luatbls.t.k),
t/n where n is an integer index (i.e. uses t.k[n]); note that negative indexes are allowed where -1 is
the last element. Alternatively, t and the symbol can be omitted, and simply pass the element without
the table name as a prefix, where the assumed table is the last one that was created or changed to (i.e.

the most ’recent’ table). In this case, passing a number will assume an integer index.

To use a I, you can select tables and groups of keys by t|seq, or t.k, or t/n. If no |./ is provided, the
recent table is used and the argument is assumed to be a sequence of keys. penlightplus’s command
penlight.seq.tbltrain() syntax is used for sequences. To summarize what seq can be, a comma-
separated list of numbers or keys are used to specify which elements are iterated over. NumPy-like

1

slicing is possibly with : to choose integer ranges. If * is provided, all string keys are iterated. If I is
entirely blank, all elements of the recent table are used, which is equivalent to t|*,:.

The cstemp default can be changed with: \luadirect {luatbls._cstemp = 'ltbl<t><k>'}, where
<t> and <k> are the table and key names. Numerical keys are converted to capital letters: 1->A, 2->B.
It is recommended that tables and keys contain letters only for predictable behaviour when using this

feature. If the value of a tbl’s key is a table, every element in that table is defined, and the keys of that

nested table is appended to the cs: ltbl<t><k1><k2> (noting that numbers are converted to letters).

Note: nested tables are currently not fully supported. Some variations of commands have an E suffix
which indicates that nested elements can be explicitly indexed. The table name must be specified, and

the validity of table names and keys are not checked.

The tbl commands fully expand the t, k, n, i, and I arguments. However a variationwith an N-appended
is usually provided which will not expand the v, keyval, or csv args.

Creating Tables

\tblnew {t} declares a new table with name t
\tblchg {t} changes the ’recent’ table

\tblfrkv {t}{keyval}[opts] new table from key-vals using luakeys
\tblfrkvN {t}{keyval}[opts] does not expand key-val string luakeys. Note: opts are parsed using
luakeys with the naked_as_value=true, so booleans must be explicitly set.

\tblfrcsv {t}{csv}[opts] a shorthand \tblfrkv {t}{csv}[naked_as_value=true,opts], a good
way to convert a comma-separated list to an array

\tblfrcsvN {t}{csv}[opts] same as above, but the csv is not expanded.

\tblkvundefcheck will throw an error if you use define a table from key-values and use a key that

was not specified in the luakeys parse options via opts.defaults or opts.defs.

\tblenforcechoices {i}{csv}will throw an error if the value of item i is not in the provided csv

Setting, getting, and modifying

\tblset {i}{v} sets a value of the table/index i to v
\tblsetN {i}{v} same as above, but the value is not expanded.

\tblget {i} gets the value and tex.sprint()s it
\tblgetE {t.k} An ’explicit’ version of tbl get. Use this for nested tables. The tbl name must be speci-
fied. The validity of table names and keys are not checked.

\tblsetE {i}{v} the explicit version of \tblset . Quotes must be used for strings in the v, and arbi-
trary lua code can be entered.

2

1 \tblfrkv{ex}{a,b,c,first=john,last=←↩
smith}%

2 [defaults={x=0,1=one,n=false,y=yes←↩
}]

3 \tblget{ex.a}\\
4 \tblset{a}{tRuE!!}
5 \tblget{a}\\
6 \tblget{ex.x}\\
7 \tblget{.x}\\
8 \tbladd{ex.newkey}{val}\tblget{newkey←↩

}\\
9 \tbladd{nk}{VAL}\tblget{nk}\\
10 \tblsetE{ex.d}{math.mod2(3)}
11 \tblget{d}

true

tRuE!!

0

0

val

VAL

1

1 \tblfrcsv{EX}{x={1,2,{1,2,3}},name=me}
2 \tblgetE{EX.x[1]}\\
3 \tblsetE{EX.x[3][3]}{99}\\
4 \tblgetE{EX.x[3][3]}\\
5 \tblgetE{EX.name}\\

1

99

me

\tbladd {i}{v} add a new value to a table using index method
\tbladdN {i}{v} above, but don’t expand the value argument

\tblapp {t}{v} append a value (integer-wise) to a table
\tblappN {t}{v}

\tblupd {t}{keyval} update a table with more keyvals
\tblupdN {t}{keyval}

\tblcon {t}{csv} concatenate array-style csv at the end of t
\tblconN {t}{csv}

Conditionals

\tblif {i}{tr}[fa] runs code tr if the item is true else fa
\tblifv {i}{tr}[fa] runs code tr if the item is truth-y (using pl.hasval) else fa
\tblifeq {i}{v}{tr}[fa] checks the equivalency of to a user-specified value. The value is fully ex-
panded. Quotes must be used to indicate strings.

\tblifeqstr {i}{v}{tr}[fa] checks the equivalency of to a user-specified value to a string (uses lu-
astring).

1 \def\JJ{1}
2 \tblfrcsv{x}{n=false,y=true,
3 k0="",kv=val,k2=6,
4 k1=1,k11="1",
5 }
6 \tblif{n}{tr}[FA]\\
7 \tblif{k0}{TR}[fa]\\
8 \tblifv{k0}{tr}[FA]\\
9 \tblifeq{kv}{'val'}{TR}[fa]\\
10 \tblifeq{k2}{6}{TR}[fa]\\
11 \tblifeq{k1}{\JJ}{Tr}
12 \tblifeqstr{k11}{\JJ}{Tr}

FA

TR

FA

TR

TR

Tr Tr

3

Iterating

\tblfor {I}{template} and \tblforN Bydefault, iterates over all elements (seq = *,:), but arbitrary
indices/keys can be iterated over as per penlight.seq.tbltrain syntax. <k> and <v> are placeholders
in the template that are replaced by the keys and vals and can be changed by:

\luadirect {luatbls._tblv = '<v>'}

If you want to iterate over a second-level table, you must use:

\tblforE and \tblforEN , and explicitly provide the table and element.

1 \tblfrcsv{x}{n1,k1=v1,n2,n3,n4,
2 k2=v2,k3=v3,n5,n6}
3 1> \tblfor{:}{<k> = <v>; }\\
4 2> \tblfor{*}{<k> = <v>; }\\
5 3> \tblfor{1,*,2::2}{<k> = <v>; }\\
6 4> \tblfor{ x | 1,*,2::2}{<k> = <v>; ←↩

}\\
7 \tblfrcsv{x}{a,{a,b,c}}
8 5> \tblforE{x[2]}{<k> = <v>; }

1> 1 = n1; 2 = n2; 3 = n3; 4 = n4; 5 = n5; 6 = n6;

2> k3 = v3; k1 = v1; k2 = v2;

3> 1 = n1; k3 = v3; k1 = v1; k2 = v2; 2 = n2; 4 = n4; 6 =

n6;

4> 1 = n1; k3 = v3; k1 = v1; k2 = v2; 2 = n2; 4 = n4; 6 =

n6;

5> 1 = a; 2 = b; 3 = c;

Definitions

\tbldef {i}[cstemp] pushes the value to macro cstemp.
\tblgdef {i}[cstemp] like above but global definition is used.

\tbldefs {I}[cstemp] and \tblgdefs {I}[cstemp] defines items in table t (use recent if blank).

1 \tblfrcsv{EX}{n1,kA=v1,n2,n3,n4,
2 kB=v2,kC=v3,n5,n6}
3 1>\tbldef{kA}[mycs]\mycs\tbldef{kA}\←↩

ltblEXkA\\
4 2> \tbldef{EX/1}\ltblEXA

1>v1v1

2> n1

1 \tblfrcsv{EX}{x={1,2,3}}
2 1>\tbldef{x}[mycs]\mycsA, \mycsB \\
3 2>\tbldefs{}\ltblEXxA, \ltblEXxB

1>1, 2

2>1, 2

\tbldefxy {i}[cstemp] splits the value of item by space, and creates two definitions <cstemp>x and
<cstemp>y. This might be useful for passing and using tikz coordinates, for example xy=0 5. An error is
thrown if the values are non-numeric.

1 \tblfrkv{EX}{coords=12 34,other}
2 \tbldefxy{coords}[d]\dx, \dy \\
3 \tbldefxy{coords}\ltblEXcoordsx , \←↩

ltblEXcoordsy \\

12, 34

12, 34

\tblmaketoggle {i}[cstemp]will create and set a toggle (see etoolbox) for a truth-yvalue (see pl.hasval)
\tblmaketoggles {I}[cstemp] will iterate over I and create and set global toggles (see etoolbox) for
boolean values

4

1 \tblfrkv{ex}{atog=true,!btog}
2 \tblmakegtoggles{}
3 \iftoggle{ltblexatog}{True}{}\\
4 \iftoggle{ltblexbtog}{}{False}\\

True

False

\tblmakelength {i}[cstemp]will ’forcefully’ create a length for an element. Glue expressions are per-
mitted. See etoolbox’s \deflength {}
\tblmakelengths {I}[cstemp] will iterate over I and create global lengths for elements that are tex
dimensions. If plain numbers are found, sp units are used (in case the convert_dimensions=true lu-
akeys option is used, which converts to sp)

1 \tblfrkv{ex}{alen=1cm,blen=2cm,←↩
clen=10mm*2+2cm}[convert_←↩
dimensions=true]

2 \tblmakelengths{}[<k>]
3 I\hspace{\alen}I\\
4 I\hspace{\blen}I\\
5 \tblmakelength{clen}[LEN]
6 I\hspace{\LEN}I

I I

I I

I I

Utilities

\tblapply {I}{func1(<v>,x,y)|:func2}[newtable] apply a Lua function(s).
If newtable is provided, a new table is created (and made the recent table) and the original table is
preserved.

The ., / or | indexermaybe used to apply a function to a single value or group of keys. Multiple functions
can be applied sequentially, separated by |.

An arbitrary global function (including additional arguments) can be used, but if a function is prefixed

with a :, the class method will be called. The stringx and tablex methods from penlight are used
depending on the value’s type. See:

https://lunarmodules.github.io/Penlight/

Arguments can be specified with round brackets, where <v> and <k> are used as a placeholder for the
values and keys. If no arguments are passed, it is assumed that the value is the only argument. Note

that luakeys parses the args, so quotes are not needed around strings for the args.

1 \tblfrcsv{ex}{{a, b, c}}
2 \tblapply{}{:concat(<v>,-) | :upper}[←↩

new]
3 1> \tblgetE{ex[1][1]}\\
4 2> \tblget{new/1}\\
5 \tblfrcsv{ex}{HelloWorld}
6 \tblapply{}{string.sub(<v>,2,-5)}[new]
7 3> \tblget{new/1}

1> a

2> A-B-C

3> elloW

\tblprt {t} pretty-print the table in console. Using \tblprt *{} will terminate the LaTeX program
immediately after and issue an error, which could be useful for debugging.

5

An Example

1 \NewDocumentCommand{\Exampletbl}{m}{
2 \tblfrcsv{ex}{#1}[defaults={sal=←↩

Hello}]
3 %\tblkvundefcheck
4 \tblapply{ex.auth}{:list2comma}
5 \tblget{sal}, \tblget{auth}! Thank←↩

you for writing such a great ←↩
novel.

6 My favorite parts were:
7 \begin{description}
8 \tblforEN{ex.chaps}{\item[<k>]←↩

<v> }
9 \end{description}
10 It was also very cool to learn ←↩

that
11 \tblgetE{ex.num[1]}*\tblgetE{ex.←↩

num[2]}=
12 \luadirect{tex.sprint(tostring(←↩

luatbls.ex.num[1]*luatbls.ex.←↩
num[2]))}

13 }
14 \Exampletbl{auth={You,Me,Dupree},
15 chaps={intro=very enticing , climax←↩

=thrilling , finale=what a ←↩
twist!}

16 num={12,13}
17 }

Hello, You, Me, and Dupree! Thank you forwriting such

a great novel. My favorite parts were:

intro very enticing

climax thrilling

finale what a twist!

It was also very cool to learn that 12*13= 156

6

