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A brief review of CFD for Aerodynamics in general: 
 
It is known that the most complete mathematical model for aeronautical flows is the 
Navier-Stokes Equations. It is also known that this model is still impossible to try to 
solve directly (DNS or Direct Numerical Simulation of Navier-Stokes Equation), even 
using the most advanced numerical methods and the most powerful super computer 
that exists today. For example, a leading scholar in Computational Aerodynamics, 
Prof. Jameson of Stanford University, stated the following: 
 
“The complexity of fluid flow is well illustrated in Van Dyke’s Album of Fluid 
Motion. Many critical phenomena of fluid flow, such as shock waves and turbulence, 
are essentially nonlinear and the disparity of scales can be extreme. The flows of 
interest for industrial applications are almost invariantly turbulent. The length scale of 
the smallest persisting eddies in a turbulent flow can be estimated as of order of  
1/

3
4Re  in comparison with the macroscopic length scale. In order to resolve such 

scales in all three spatial dimensions, a computational grid with the order of Re
9

4  
cells would be required. Considering that Reynolds numbers of interest for airplanes 
are in the range of 10 to 100 million, while for submarines they are in the range of 
10 9 , the number of cells can easily overwhelm any foreseeable supercomputer. Moin 
and Kim reported that for an airplane with 50-meter-long fuselage and wings with a 
chord length of 5 meters, cruising at 250 m/s at an altitude of 10,000 meters, about 10 
quadrillions (1016 ) grid points are required to simulate the turbulence near the surface 
with reasonable details. They estimate that even with a sustained performance of 1 
Teraflops, it would take several thousand years to simulate each second of flight 
time. Spalart has estimated that if computer performance continues to increase at the 
present rate, the Direct Numerical Simulation (DNS) for an aircraft will be feasible in 
2075.” 
See  http://www.stanford.edu/~mfatica/papers/jameson_fatica_hpc.pdf 
 
It is obvious that, at least for the present, the Navier-Stokes Equations must be 
simplified so that it can be solved numerically using existing computers. If only the 
large scales turbulence are to be simulated, the Navier Stokes equation can be 
simplified to become a model which is known as LES or Large Eddy Simulation. This 
simplified equation is still too difficult to be solved, except for some reasonably 
simple geometry. LES is still not used in industry, but a lot of research is being 
carried out in this field. 
 
Further information on LES is given by several authors as follows 
 
“In Large Eddy Simulation the governing equations (the continuity equation, the 
Navier-Stokes equation, the energy equation etc.) are filtered to separate the large-
scale and small-scale turbulence. The large-scale turbulence is solved for by the 
discretized equations whereas the small-scale turbulence is modelled. Since 
turbulence is three-dimensional and unsteady, it means that LES must always be 
carried out as 3D, unsteady simulations.” 
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See  http://www.tfd.chalmers.se/~lada/cfdkurs/cfdkurs02/cfdkurs_2002.html 
 
“Vast increases in the speed and storage capacity of computing machinery and 
continued development of numerical algorithms demonstrate the progress of 
computational fluid dynamics (CFD) to provide an effective means for performing 
design and analysis of aerospace vehicles. While such technical advances are 
dramatic, the inability of CFD to correctly simulate fluid dynamic turbulence in many 
situations limits the accurate prediction of performance parameters for practical 
configurations. 
Nonlinear partial differential equations that describe aerodynamic flows and represent 
the conservation of mass, momentum, and energy provide the basis for CFD. These 
equations, solved at every point contained in a computational grid and constructed 
about an air vehicle, employ high-speed computers to provide a simulated flowfield. 
High-frequency, small amplitude fluctuations of a statistically random nature, 
commonly referred to as turbulence, often characterize the physical processes of such 
flows. Researchers typically average the governing equations for practical 
computations over a time period, which is long compared to the high-frequency 
oscillations, but may be short with respect to the time it takes air to flow past the 
vehicle. Thus, researchers do not calculate turbulence properties directly and must 
modify the equations by incorporating a model to account for their effects. 
Researchers formulated a substantial number of turbulence models that vary 
considerably in complexity and in the amount of computational effort required for 
implementation. Most function reasonably well over a wide range of flow conditions, 
contributing to the great success of CFD. All turbulence models eventually fail when 
the fluid state becomes sufficiently intricate and, therefore, cannot accurately predict 
aerodynamic quantities of interest, such as lift, drag, and heat transfer over general air 
vehicle configurations, particularly at off-design conditions. In addition, the use of 
time-averaged flow equations neglects the effects of high-frequency phenomena, 
which is an important consideration of aero-acoustics, combustion, buffet, flutter, and 
other fluid-related interactions. 
Researchers may compute fine-scale fluid details directly, as an alternate approach to 
time-averaged equations or traditional turbulence modeling. The designated direct 
numerical simulation (DNS) procedure places severe requirements on the temporal 
and spatial resolution of simulated flowfields, resulting in an exorbitant expenditure 
of computational resources. For this reason, researchers generally limit these 
calculations to simple geometric configurations. Leaving the smallest turbulent 
structures spatially under-resolved may extend the utility of DNS. A non-traditional 
model represents these structures and quantifies only those contributions to the 
flowfield not supported by the numerical algorithm on the computational grid 
employed to solve the governing equations. This treatment, referred to as large-eddy 
simulation (LES), utilizes a subgrid model to indirectly account for the fine-scale 
turbulent structures. These structures, which are believed to be homogeneous and 
possess a universal character, may be easily and reliably described.” 
See  http://www.afrlhorizons.com/Briefs/Sept01/VA0004.html 
 
“A large-eddy simulation (LES) code was developed at the NASA Glenn Research 
Center to provide more accurate and detailed computational analyses of propulsion 
flow fields. The accuracy of current computational fluid dynamics (CFD) methods is 
limited primarily by their inability to properly account for the turbulent motion 
present in virtually all propulsion flows. Because the efficiency and performance of a 
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propulsion system are highly dependent on the details of this turbulent motion, it is 
critical for CFD to accurately model it. The LES code promises to give new CFD 
simulations an advantage over older methods by directly computing the large 
turbulent eddies, to correctly predict their effect on a propulsion system. 
Turbulent motion is a random, unsteady process whose behaviour is difficult to 
predict through computer simulations. Current methods are based on Reynolds-
Averaged Navier-Stokes (RANS) analyses that rely on models to represent the effect 
of turbulence within a flow field. The quality of the results depends on the quality of 
the model and its applicability to the type of flow field being studied. LES promises to 
be more accurate because it drastically reduces the amount of modeling necessary. It 
is the logical step toward improving turbulent flow predictions. In LES, the large-
scale dominant turbulent motion is computed directly, leaving only the less significant 
small turbulent scales to be modeled.” 
See  http://www.grc.nasa.gov/WWW/RT2002/5000/5860debonis.html 
 
Since LES is still not a practical tool for industry, at present the most advanced CFD 
softwares that are available commercially are all based on RANS or Reynolds 
Averaged Navier Stokes. In 1895 Osbourne Reynolds (see Houghton and Carpenter 
Aerodynamics for Engineering Students, 5th edition, page 438) introduced the concept 
of time (or statistical) averaging and applied the so called Reynolds rules on 
averaging on the Navier Stokes Equations. The resultant equations are known as the 
Reynolds Averaged Navier Stokes, which have a fundamental problem known as the 
Closure problem of turbulence. Basically the problem is that there are more unknown 
parameters than equations to be solved, such that the system of equation is 
indeterminate, unless additional equations are introduced. These additional equations 
are basically empirical in nature and based on what is known as turbulence modelling. 
Stanford University web site has the following to say about RANS: 
 
“One of the most popular simplifications made to the Navier-Stokes Equations is 
"Reynolds Averaging". This simplification to the full Navier-Stokes equations 
involves taking time averages of the velocity terms in the equations.  
Writing: u = <u> + u ', v = <v> + v', etc. (where <> represents a time average) 
with the fluctuations having zero mean value: <u'> = 0 
we have: <u2> = <u>2 + <u'2>, <uv> = <u><v> + <u'v'> 
This allows us to write the time-averaged NS equations as: 

 
and similarly for the y and z components. 
This looks just like the more general Navier Stokes equations for incompressible 
flow* which hold for steady, laminar flow except that there are additional terms that 
act as additional stresses on the right hand side. These terms represent the effect of 
turbulence on the mean flow. They are called "Reynolds stresses" and are sometimes 
said to be caused by "eddy viscosity". These terms are generally much larger than the 
normal viscous terms. 
The business of predicting these stresses and relating them to the computed mean 
flow properties is called turbulence modeling. This is usually accomplished 
empirically or by using the results of detailed time-dependent simulations. 
Reynolds averaged NS solvers are appropriate for the analysis of viscous, 
compressible flows and have been applied to rather general configurations, but one 
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must be careful that the assumptions of the turbulence model are compatible with the 
characteristics of the flow of interest.” 
See  http://adg.stanford.edu/aa208/modeling/rans.html 
See also   http://aerodyn.org/CFD/NSE/nse.html 
And also  http://www.le.ac.uk/engineering/ar45/eg7029/eg7029w/node38.html 
 
There are quite a few RANS based CFD softwares that are available commercially, 
such as POLYFLOW, CFX , FIDAP, FLOTRAN, PHOENICS, CFX, STAR-CD, 
FLUENT etc. For complex geometries, the computer run times for these programs are 
usually very long if done on a PC. Industrial type problems are usually run on 
specialized work-stations or clustered super computers. 
Even though RANS based softwares have been available since the 1990s, for routine 
calculations an aerospace company usually uses Euler equation based softwares. The 
Euler solver assumes that the flow is inviscid. For most calculations, except for 
predicting drag, the Euler solver is usually sufficiently accurate. The run time for an 
Euler solver is very much faster than for a RANS solver, when solving the same 
problem. The Euler solver was still very much a research tool before the 1980s, when 
the most common tool used in Aerospace industries was Full Potential Equation 
(FPE) solver. The FPE can be obtained from the Euler equation by making the 
simplifying assumption that the flow is irrotational. Shock waves are basically 
rotational, but FPE was able to capture shock waves that were not too strong, by some 
clever numerical manipulations. 
Prior to the late 1970s most advanced computational aerodynamic softwares were 
based on simplified version of the FPE, known as the Transonic Small Disturbance 
(TSD) or Transonic Small Perturbation (TSP). The simplification is obtained by 
assuming that the wing or aerofoil is very thin. 
Further simplifications can be obtained by assuming that the flow is incompressible 
(as well as being inviscid and irrotational). For this type of flow the governing 
equation is known as the Potential Equation or the Laplace equation, which can be 
solved using a number of techniques, all of which are based on the linearity property 
of the Laplace equation. The Laplace equation has a number of elementary solutions, 
which can be used as building blocks for solving the aerodynamic problem. For 3-D 
flows, the problem can be solved using the panel method, the vortex lattice method 
and the Lifting Line Theory etc. For 2-D flows, the aerodynamic problem based on 
the Laplace equation can be solved using the panel method and the Complex Variable 
Conformal Mapping method. If the wing is assumed to be very thin and very lightly 
cambered then the 2-D problem can be solved using the Thin Aerofoil Theory, while 
the 3-D problem can be solved using the Lifting Line Theory (LLT) 
This lecture note will discuss the Lifting Line Theory in greater details, while the 
Thin Aerofoil Theory (TAT) has been discussed previously elsewhere. 
 
Finite span wing of constant cross section. 

�According to the thin aerofoil theory (TAT), the slope of the lift coefficient versus 
angle of attack curve for an infinitely long aerofoil has a value of 2π . An aerofoil by 
definition is a 2-D wing whose cross section is exactly the same all along the span. In 
reality obviously there is no such thing as an infinitely long aerofoil. All aerofoils 
must be of finite length. The ratio of the span length of the aerofoil to its chord length 
is called the aspect ratio (AR). Wind tunnel testing has shown that a finite length 
aerofoil has a lift to angle of attack curve slope of less than 2π . The value of the 
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slope becomes smaller as the aspect ratio is reduced. This is in contradiction to the 
prediction of TAT and is caused by 3-D effect, which we must now study. 

 

Fig.1 Lift curve slope varies as a function of aspect ratio 
(Obtained from   http://www.aerospaceweb.org/question/aerodynamics/q0167.shtml ) 

Firstly, it must be remembered that in TAT the infinitely long aerofoil is replaced by a 
vortex panel, which is infinitely long and normal to the plane of the page. If the 
aerofoil is of finite length, then each vortex filament, which makes up the vortex 
sheet, must be of finite length also, namely as long as the wing’s span. However, we 
know from Kelvin-Helmholtz theorem of vortex motion (e.g. see page 215 of 
Houghton and Carpenter 5th ed) that a vortex filament can’t end in a fluid. A vortex 
must be infinitely long, or must form a close loop or ends on a solid boundary. It is 
obvious that we can’t represent the finite length aerofoil by a bunch of finite length 
vortex along the span of the wing. The vortex filament must be infinitely long or 
forming a closed loop. This problem can be resolved as follows. When an aircraft 
starts to move along the runway, a starting vortex is generated along the span of the 
wing, which is then shed and remains fixed at the runway (e.g. see Houghton and 
Carpenter 5th ed page 211). Since initially the flow around the wing is irrotational, 
therefore the circulation of the system must also be zero. Since vorticity or circulation 
can’t be created therefore the total circulation must remain zero with time. This means 
that to counteract the circulation around the starting vortex, a new vortex must be 
created along the wing span but in the opposite direction such that the total vorticity 
remains zero. The starting vortex is connected to the vortex, which is bound on the 
wing, by 2 vortex filaments, each of which begins at each wing tip. The moving wing 
is then represented by a closed loop in the form of a rectangle. However, after a 
sufficiently long time the bound vortex on the wing would have moved very far away 
from the starting vortex, such that the effect of the starting vortex on the airflow 
around the wing can be neglected. In other words, instead of a rectangular shape 
vortex filament, we now have a U shape or horseshoe shape vortex filament to 
represent the moving finite length wing (see Houghton and Carpenter page 214). The 
short base of the U is located at the quarter chord line of the wing, whereas the two 
wing tip vortices, which forms the sides of the U, are semi infinitely long. 
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When a wing is moving through a stationary air, or conversely when a large body of 
air (e.g. in a wind tunnel) moves uniformly over a stationary wing, the shape of the 
aerofoil is such that the air moves faster over the upper part of the wing when 
compared to the air that moves under the lower part of the wing. This implies that the 
pressure over the upper part is less than the pressure under the lower part of the wing. 
Since air tends to flow from the high pressure to a lower pressure region, therefore 
there is a tendency for air to try to move from the lower part to the upper part of the 
wing. However, the wing is made of solid material and obviously no air particle can 
penetrate into the wing and moves from the lower to the upper part of the wing, 
except at the wing tip, where air is free to move from the lower to the upper part of 
the wing. The direction of air motion is span-wise. On the upper part air moves from 
the tip to the root of the wing, whereas along the lower part air moves from the wing 
root towards the tip region. It can be easily understood then, that the flow over the 
finite length wing is not truly 2-dimensional, since there is a cross flow along the 
span-wise direction.  

 
Fig. 2 Span-wise flow on a finite length wing causes trailing vortices to be formed. 
(Obtained from   http://www.aerospaceweb.org/question/aerodynamics/q0167.shtml  ) 
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Fig. 3 Trailing vortex sheet is shed by the wing. 
(Obtained from  http://www.adl.gatech.edu/classes/lowspdaero/lospd1/lospd1.html  ) 

 

Fig. 4 The initially straight steamlines upstream of the finite wing become rotational 
after flowing over the wing, creating vorticity. 
From  http://www.desktopaero.com/appliedaero/potential3d/finitewings.html 

 

 
 
Fig. 5 Formation of the starting vortex and generation of the horseshoe vortex. 
(Obtained from  http://www.pilotsweb.com/principle/liftdrag.htm  ) 
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Fig. 6 Vortex sheet shed by the wing 
(Obtained from  http://www.pilotsweb.com/principle/liftdrag.htm  ) 
 
It is to be expected, however, that the cross flow velocities involved would be very 
much smaller than the longitudinal (forward motion) velocity of the aircraft’s wing. 
Thus it is quite reasonable to assume that the main flow is basically still 2-D. By 
assuming that the flow is locally 2-D, we can evaluate the aerodynamic properties of 
the wing as being the linear sum of the elemental aerofoils making up the wing. The 
very difficult 3-D problem can then be reduced in its complexity to become the much 
simpler 2-D problem. However, as noted earlier (see fig. 1) the lift curve slope of a 
finite wing is less than that for the infinite aerofoil, which is predicted using 2-D 
assumption. This difficulty can be resolved by noting the fact that horseshoe vortices 
are shed from the trailing edge of the wing. Each horseshoe vortex would induce a 
downward velocity at the wing, thus the angle of attack of the airflow seen by the 
wing is somewhat less than the geometric angle of incidence of the wing. 
 

 
 
Fig. 7 Downward air velocity induced by trailing vortices decreases the angle of 
attack seen by the local aerofoil section. 
(Obtained from   http://www.ae.su.oz.au/aero/liftline/liftline.html   ) 
 
As can be seen from the above figure, the direction of airflow approaching the wing is 
not the free stream direction (indicated by the vector V∞ ) but by the local velocity 
vector, localV . The angle of incidence seen by the aerofoil is thus the local angle of 
incidence, which is the free stream angleα less the downwash angle iα . Because the 
effective angle of incidence is reduced, the lift generated by the elemental aerofoil 
would be less than if the flow is truly 2-D without any vorticity being shed at the 
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trailing edge. Since the downwash angle always reduces the effective angle of 
incidence all along the span, therefore the overall lift generated by the wing would 
also be less than that predicted by a 2-D method. This is the reason why the lift curve 
slope of a finite wing is less than that which would be produced by a truly 2-D wing. 
Furthermore, it is logical to think that the effect of the cross flow would be felt more 
strongly along the span if the aspect ratio is smaller, hence the slope of the lift curve 
would be smaller for smaller value of aspect ratio. 
 
It should also be noted that the actual lift produced by an elemental aerofoil acts along 
a line normal to the local velocity vector, and not normal to the free stream vector. On 
the other hand, without considering the local situation lift is always defined as the 
force, which is normal to the direction of the free stream, whereas the force 
component along the free stream direction, thus opposing the motion, is called drag. 
The actual elemental lift produced by the local aerofoil can be resolved into 2 
components. One of the force components is along the direction normal to the free 
stream direction, and the other is along the free stream direction. The force 
component normal to the free stream direction is obviously the elemental lift, but now 
surprisingly we have a drag component along the direction of the free stream, 
eventhough the flow is assumed to be inviscid. Furthermore, the drag produced is 
equal to the lift multiplied by sin iα . For small angles we have sin iα ≈ iα thus the drag 
is equal to lift multiplied by downwash angle. Since the drag is created by the 
presence of induced velocity caused by the trailing vortex, therefore it is referred to as 
induced drag. Since it is always present whenever a wing produces lift, it is also 
referred to as lift dependent drag. When lift is zero, the induced drag is also zero. 
 
The distribution of the horseshoe vortices on the finite wing can be seen in figure 5.21 
on page 231 of Houghton and Carpenter 5th ed. If the short base of each U vortex 
filament is assumed to be located at the quarter chord point of the wing, then 
aerodynamically speaking the wing can be modelled as a bound vortex along the 
quarter chord line plus an infinite number of trailing vortex filaments which can be 
said to form a trailing vortex sheet ( see fig. 8 below)  

 
Fig. 8  Bound vortex and trailing vortex sheet, representative of a finite wing.                                    
(Obtained from : http://cromagnon.stanford.edu/aa200b/lect_notes/lect13-14.pdf  ) 
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From the Kelvin-Helmholtz theorem it is known that the strength of any vortex 
filament is constant along its length. However, the bound vortex is not really a vortex 
filament, but more like a vortex tube consisting of an infinite number of filaments of 
varying lengths, the longest being about the same as the span of the wing and the 
shortest having a length approaching zero (this is for the U vortex filament, which is 
located along the midpoint of the span). Keeping this in mind, we can now say that 
the strength of the bound vortex tube varies along the span of the wing. If the 
midpoint of the wing span is taken to be the origin of the y-axis, then the strength of 
the bound vortex is a function of y, the distance from the origin to a point along the 
wing span. The port wing tip is located at y = -b/2 whereas the starboard wing tip is 
located at y = + b/2, where b is the span length of the wing. If the vortex strength at y 
is ( )yΓ  and the strength at y+ ∆ y is ( ) ( ) ( )y y y yΓ + ∆ = Γ + ∆Γ , then the strength of 

the trailing filament at y is obviously equal to ( )y∆Γ , which is also equal to 

( ).y dy′Γ , where ( ) ( )d y
y

dy

Γ
′Γ = . 

Let us now consider the induced velocity at point y* somewhere along the span of the 
wing. The induced velocity at y* due to the bound vortex is zero, since a straight 
vortex can’t induce a velocity on itself. However, the semi infinitely long trailing 
vortex filament at y, the strength of which is ( )y∆Γ , would induce a downward 
velocity the magnitude of which is given by the Biot-Savart rule as follows (e.g. see 
page 218 of Houghton and Carpenter 5th ed) 
 

  
( )

( )
( )
( )

.

4 * 4 *

y y dy
dw

y y y yπ π
′∆Γ Γ

= − = −
− −

     (1) 

 
The total induced velocity at y* is then given by 
 

  ( ) ( )
( )

/ 2

/ 2

.1
*

4 *

b

b

y dy
w y

y yπ −

′Γ
= −

−�       (2) 

 
From fig.7 it can be seen that the induced downwash angle is given as follows 
 

  
( )

( )
/ 2

1

/ 2

.1
tan

4 *

b

i
b

y dyw
V V y y

α
π

−

∞ ∞ −

′Γ� �−≈ =� � −� �
�     (3) 

 
The effective angle of attack at y* is 
 
  ( ) ( ) ( )* * *eff iy y yα α α= −       (4) 
 
If the aerofoil is cambered and its zero lift angle of attack is 0α , then the effective 
angle of attack becomes 
 
  ( ) ( ) ( ) ( )0* * * *eff iy y y yα α α α= − −     (5) 
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Note that 0α is always negative for a normally cambered aerofoil. 
 
From the 2-D potential flow theory we know that the lift coefficient is given by 
 
  ( )02 . 2l eff iC π α π α α α= = − −      (6) 
 
The lift produced by an elemental aerofoil of width dy* at y* is then 
 
  ( ) ( )( )2 21

02 . *. * *. *l iLift V cdy C y V cdy yρ πρ α α α∞ ∞= = − −  

 
where c is the aerofoil’s chord length and lC is its lift coefficient, whereas ρ  and V∞  
are air density and free stream velocity respectively. 
Now from the Kutta-Joukowski lift theorem, we know that for the elemental aerofoil 
 
   ( )*Lift V yρ ∞= Γ dy* 
therefore 
  ( ) ( )( )2

0. * . *iV y V c yρ πρ α α α∞ ∞Γ = − −     (7) 

 
The above equation can be simplified as follows 
 

  
( ) ( ) 0

*
*i

y
y

V c
α α α

π ∞

Γ
+ = −  

 
Substitution of equation (3) into the above equation gives the following result 
 

  
( ) ( )

( )
/ 2

0
/ 2

* .1
4 *

b

b

y y dy

V c V y y
α α

π π∞ ∞ −

′Γ Γ
+ = −

−�     (8) 

 
The above equation must be satisfied at all points y* along the span. 
Since the distribution of vortex tube strength, ( )*yΓ , is smooth and continuous, and 
may be symmetric (when the ailerons are undeflected) or antisymmetric (when the 
ailerons are deflected, such as when the aircraft is turning), it is suitable to represent 
the unknown solution as a Fourier series, with unknown constants. 
Let us assume that the solution can be satisfactorily approximated by the following 
Fourier series 

  ( )
1

2 sinn
n

y bV A nθ
∞

∞
=

Γ = �       (9) 

 
It should now be noted that 
 

  ( ) ( ) ( )
. . .

d y d
y dy dy d

dy d

θ
θ

θ
Γ Γ

′Γ = =                (10) 

 
Therefore 
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  ( )
1

. 2 cos .n
n

y dy bV nA n dθ θ
∞

∞
=

′Γ = �                (11) 

 
The polar coordinate,θ , is related to the Cartesian coordinate, y, as follows 
 

  cos
2
b

y θ= −                   (12) 

 
The relationship should satisfy the requirements that when y = -b/2 then 0θ = , while 
when y = +b/2 then θ π= . It can be easily shown that equation (12) indeed satisfies 
the above requirements. 
 
Now it should be noted that 

  ( )* cos cos *
2
b

y y θ θ− = −                 (13) 

 
Now equation (8) can be rewritten as follows 
 

 
( )0

11
01

2

cos .
2 .2 sin *

cos cos *1
4

nn
nn

n d
bV n AbV A n

V c V b

π θ θ
θ θ θ

α α
π π

∞∞

∞∞
== ∞

∞ ∞

−
+ = −

�� �
        (14) 

 
From basic mathematical theory, it is known that 
 

  ( )0

cos sin *
cos cos * sin *

n n
d

π θ θθ π
θ θ θ

=
−�                (15) 

 
Equation (14) can now be simplified to become 
 

 0
1 1

2 sin *
sin * . .

sin *n n
n n

b n
A n n A

c
θθ α α

π θ

∞ ∞

= =
+ = −� �                (16) 

 
Theoretically speaking the above equation must be satisfied at every point y* along 
the wing span, so that we have an infinite number of equations to be solved 
simultaneously to calculate the infinite number of unknown Fourier constants 
(amplitudes) , nA . This is obviously not very practical, if not impossible to do. In 
practice equation (16) is required to be satisfied at a few points on the wing span. 
Equation (16) is now replaced by the following 
 

 0
1 1

2 sin *
sin * . .

sin *

N N

n n
n n

b n
A n n A

c
θθ α α

π θ= =
+ = −� �                (17) 

 
where N is a reasonably large number, around 20 or less, of points on the wing span at 
which the equation must be satisfied. 
The approximation for the bound vortex tube strength distribution, i.e. equation (9),  
must now be modified slightly as follows 
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  ( )
1

* 2 sin *
N

n
n

bV A nθ θ∞
=

Γ = �                 (18) 

 
For a symmetric distribution of lift along the wing span, the lift distribution along the 
right (starboard side) wing is a mirror image of the distribution along the left (port 
side) wing. For such a situation it is only necessary to calculate the lift distribution on 
one side of the wing span only. This will reduce the number of points at which the 
equation (17) must be satisfied by half. 
If N is an even number, N = 2M, equation (18) can be replaced as follows 
 

  ( ) ( )2 1 2
1 1

* 2 sin 2 1 * sin 2 *
M M

m m
m m

bV A m A mθ θ θ∞ −
= =

	 
Γ = − +� �

 �
� �             (19) 

On the other hand if N is odd, N = 2M + 1, equation (18) can be replaced by 
 

  ( ) ( )
1

2 1 2
1 1

* 2 sin 2 1 * sin 2 *
M M

m m
m m

bV A m A mθ θ θ
+

∞ −
= =

	 
Γ = − +� �

 �
� �             (20) 

 
Let us now consider 2 points on the wing, each being a mirror image of the other. In 
other words, if one of the points is the point *θ , where 0 * / 2θ π< < , the other point 
is the point *π θ− . The application of equation (19) at point *π θ−  would give the 
following results 
 

 ( ) ( )( ) ( )2 1 2
1 1

* 2 sin 2 1 * sin 2 *
M M

m m
m m

bV A m A mπ θ π θ π θ∞ −
= =

	 
Γ − = − − + −� �

 �
� �  

 
Now it should be noted that 
 

  
( )( ) ( )

( )
sin 2 1 * sin 2 1 *

sin 2 * sin 2 *

m m

m m

π θ θ
π θ θ

− − = −

− = −
 

Therefore 
 

( ) ( )2 1 2
1 1

* 2 sin 2 1 * sin 2 *
M M

m m
m m

bV A m A mπ θ θ θ∞ −
= =

	 
Γ − = − − −� �

 �
� �             (21) 

 
Due to symmetry we must have ( ) ( )* *θ π θΓ = Γ −  or  
 

( )

( )

1

2 1 2
1 1

2 1 2
1 1

sin 2 1 * sin 2 *

sin 2 1 * sin 2 *

M M

m m
m m

M M

m m
m m

A m A m

A m A m

θ θ

θ θ

+

−
= =

−
= =

− +

= − −

� �

� �
            (22) 
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It can be clearly seen that equation (22) can only be satisfied if all even terms of the 
Fourier amplitudes, 2mA , must be zero. Therefore, both equations (19) and (21) are 
now the same equation given by 
 

  ( ) ( ) ( )2 1
1

* * 2 sin 2 1 *
M

m
m

bV A mθ π θ θ∞ −
=

Γ = Γ − = −�              (23) 

 
If it is now defined that 
 
   2 1m mA A −=   for m = 1,2,3,    , M.             (24) 
 
then equation (23) can be written in a slightly different form as follows 
 

  ( ) ( ) ( )
1

* * 2 sin 2 1 *
M

m
m

bV A mθ π θ θ∞
=

Γ = Γ − = −�              (25) 

 
It can be shown by following the same argument that if N is odd, which means that 
the wing’s mid span point is chosen as one of the control points, then we have 
 

  ( ) ( ) ( )
1

1

* * 2 sin 2 1 *
M

m
m

bV A mθ π θ θ
+

∞
=

Γ = Γ − = −�              (26) 

 
The above discussion shows that for a symmetric wing load distribution we need to 
compute only the odd numbered Fourier coefficients, thus the number of equations to 
be solved simultaneously is reduced to only half of the more general situation, which 
is represented by equation (17) applied at N distinct control points. It is also logical to 
select N to be an even number so that N = 2M, even though an odd value of N is also 
permissible. For the same amount of computational effort an even value of N gives a 
better accuracy than an odd value of N. In the following discussion we will assume 
that N is even. 
 
For a symmetric wing loading condition, and the choice of the index N being even so 
that N = 2M, the governing equation is a simplified form of equation (17) as follows 
 

 ( ) ( ) ( )
0

1 1

sin 2 1 *2
sin 2 1 * 2 1 . .

sin *

M M

m m
m m

mb
A m m A

c

θ
θ α α

π θ= =

−
− + − = −� �             (27) 

 
Now let us define the following 
 

  
( ) ( )* 2 12

sin 2 1 *
sin *m

mb
C m

c
θ

π θ
� �−

= + −� �
� �

               (28) 

 
Equation (27) can now be written in a more compact and familiar form as follows 
 

   *
0

1

.
M

m m
m

C A α α
=

= −�                 (29) 
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The distribution of the bound vortex strength as given by equation (25) requires that 
we solve an MxM simultaneous equations, i.e. equation (29) applied M times at M 
distinct control points on one side only of the wing. The control points may be chosen 
as follows. The left half of the wing span is divided up into M equal intervals, which 
is equivalent to dividing up the whole span into N equal intervals, and the control 
points are chosen to be the midpoints of the intervals so that their coordinates are 
given by the following equation 
 

   
2 1

1
2 2k

b k
y

M
−� �= − −� �

� �
 for k =1, 2, 3, …, M             (30) 

 
The polar coordinates corresponding to the control points are then calculated as 
follows 

                            1 12 2 1
cos cos 1

2k k

k
y

b M
θ − − −� � � �= − = −� � � �

� � � �
   for k =1,2,…, M           (31) 

The system of equations that must be solved numerically is now given by 
 

  0
1

.
M

km m
m

C A α α
=

= −�  for k =1,2, 3, …, M                           (32) 

 
where the matrix coefficients kmC  is given by equation (28) applied at the point y*, 

which is represented by the thk  control point or for * kθ θ=  
 

  
( ) ( )2 12

sin 2 1
sinkm k

k

mb
C m

c
θ

π θ
� �−

= + −� �
� �

 for m =1, 2, 3, …, M             (33) 

 
The system of simultaneous equations (32) can be solved to give the values of the 
Fourier coefficients mA , for m = 1, 2, .., M , which are then used in the formula for 
the sought for solution of the bound vortex strength distribution as follows 

For any value of y between the range of  -b/2<y< 0 and 1 2
cos

y
b

θ − � �= −� �
� �

the values of 

the local bound vortex strength at y and at –y, are given by the following equation 
 

  ( ) ( ) ( ) ( )
1

2 sin 2 1
M

m
m

y y bV A mθ θ∞
=

Γ = Γ − = Γ = −�              (34) 

 
The load or lift per unit length distribution along the span is given by the following 
 

 ( ) ( )2

1

( ) ( ) ( ) 2 sin 2 1
M

m
m

L y L y L V b V A mθ ρ θ ρ θ∞ ∞
=

∆ = ∆ − = ∆ = Γ = −�               (35) 

 
Therefore the total lift acting on the wing, which is twice that of the lift on the semi-
span only, is thus given by the following equation 
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0 0 / 2

/ 2 / 2 0

2 ( ). 2 ( ). . 2 ( ).sin .
2b b

dy b
Lift L y dy L y d L y d

d

π

θ θ θ
θ− −

= ∆ = ∆ = ∆� � �  

 ( )
0

2 2

1 / 2

2 sin 2 1 .sin .
M

m
m b

Lift b V A m dρ θ θ θ∞
= −

= −� �  

 

Now we know that ( )
/ 2 / 2

0 0

2sin .sin . 1 cos 2
2

d d
π π πθ θ θ θ θ= − =� �  and for 1m ≠  we also 

know that ( ) ( )( ) ( )2sin 2 1 .sin cos 2 2 cos 2m m mθ θ θ θ− = − − , therefore for 1m ≠  
  

 ( ) ( )( ) ( )
/ 2 / 2

0 0

2 sin 2 1 .sin . cos 2 2 cos 2 . 0m d m m d
π π

θ θ θ θ θ θ	 
− = − − =
 �� �          (36) 

 
The total lift on the wing is then   
     2 21

12Lift b V Aπ ρ ∞=               (37) 
Therefore the lift coefficient for the wing is given by 
 

    121
2

. .
.L

Lift
C AR A

V S
π

ρ ∞

= =               (38) 

 
where S is the wing area and AR is the Aspect Ratio of the wing 
 
    S = b.c                 (39) 
 

    AR = 
2b b

S c
=                 (40) 

 
It should be remembered that the result obtained above is based on the assumption 
that the local flow around each elemental aerofoil is 2-dimensional. This assumption 
is obviously not very accurate, because we know that there is a cross flow along the 
wing span. If the aspect ratio of the wing is quite large, then the cross flow would be 
felt most strongly only near the tip region, whereas everywhere else along the wing 
span the 2-dimensional flow assumption should be quite appropriate. However, if the 
aspect ratio is small, then the cross flow would be felt all along the wing span and the 
2-dimensional flow assumption would be erroneous throughout most of the wing 
span. It follows, therefore, that the result obtained above should be valid for any wing 
with fairly large aspect ratio, but the result would become more and more erroneous 
as the aspect ratio of the wing is decreased. 
 
It was stated earlier (see page 8) that the direction of airflow approaching the wing is 
not the free stream direction (indicated by the vector V∞ ) but the direction of the local 
velocity vector, localV , which varies along the span. The change in the local velocity 
direction is caused by the induced velocity, and is given by the induced angle, the 
magnitude of which is given by equation (3). The presence of induced angle is the 
source of the creation of the induced drag.  
Let *

diC be the local induced drag coefficient, and its magnitude is then given by 
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   * * * * *. tan .di l i l iC C Cα α= ≈                (41) 
 
The total induced drag acting on the wing can be obtained by integrating the above 
local drag expression for all values of y along the wing span 
 

 ( ) ( ) ( ) ( )
/ 2

* * * *

/ 2 0

1 1
* . * . * * . * .sin * *

2

b

Di l i l i
b

C C y y dy C d
b

π

α θ α θ θ θ
−

= =� �             (42) 

 
The local induced downwash angle is given by equation (3) shown on page 10, where 
the strength of the trailing vortex element is given by equation (11). The integral of 
equation (3) has actually been evaluated (see equation (14)) and can be written more 
explicitly as follows. 

  ( )
*

*
*1

1 12 0

2 cos . sin
. . .

4 cos cos * sin

N N

i n n
n n

bV n d n
n A n A

V b

π θ θ θα
π θ θ θ

∞

= =∞

= =
−� ��             (43) 

The local lift coefficient, at y*, can be evaluated as follows 
 

   
* *

* *
21

12

2 4
sin

N

l n
n

V b
C A n

V c V c c
ρ θ

ρ
∞

=∞ ∞

Γ Γ= = = �                         (44) 

 
Equation (42) can now be processed further as follows 
 

  
*

* * *
*

1 10

2 sin
sin . . . sin

sin

N N

Di k n
k n

b n
C A k n A d

c

π θθ θ θ
θ= =

= � ��  

 
 

  * * *

1 1 0

2
. sin .sin

N N

Di n k
k n

b
C n A A n k d

c

π

θ θ θ
= =

= �� �  

 
Now we know that 

   0

0

sin .sin . 0

sin .sin .
2

n k d for n k

n n d for n k
n

π

π

θ θ θ

πθ θ θ

= ≠

= =

�

�

 

 
Therefore 
 

     

( )

2

2 2
1

1 1 1

2 22 2
1

1 11 1

. . . . .

. .
. .

. .

N N
n

Di n
n n

N N
n nL

Di
n n

Ab
C n A AR A n

c A

AR A A AC
C n n

AR A AR A

π π

π
π π

= =

= =

� �
= = � �

� �

� � � �
= =� � � �

� � � �

� �

� �
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Now let us define the following quantity, e. 
 

  2 2

1 21 1

1 1

. 1 .
N N

n n

n n

e
A A

n n
A A= =

= =
� � � �

+� � � �
� � � �

� �
               (45) 

 
thus 
 

   
2

. .
L

Di

C
C

AR eπ
=                  (46) 

 
The quantity e as defined above is known as the Oswald efficiency factor.  
(e.g. see http://www.rmcs.cranfield.ac.uk/aeroxtra/olaedrag.ppt ) 
It can be seen from equation (45) that the Oswald efficiency factor is always less than 
1. The maximum value of e = 1 is obtained for the special case of wing load 
distribution given by equation (9) where nA = 0 for all values of n, except for n = 1. 
This special load distribution is then given by the following equation 
 

   ( ) ( ) 1
1

2 sin 2 sinn
n

y bV A n bV Aθ θ θ
∞

∞ ∞
=

Γ = Γ = =�  

Since 
2

cos
y

b
θ = −  therefore 

22
sin 1

y
b

θ � �= −� �
� �

 and the span wise distribution of 

wing load is given by 
 

   ( )
2

1

2
2 1

y
y bV A

b∞
� �Γ = −� �
� �

                (47) 

 
and also 
 

   ( )
2

1

2 2
. 4 1l

y
c C y bA

V b∞

Γ � �= = −� �
� �

              (48) 

 
Since 14bA is a constant therefore the wing load distribution that has the best value of 
Oswald efficiency of e =1, is the elliptic distribution as shown above. 

It should be noted that the function 
22

1
y

f
b

� �= −� �
� �

 can be rewritten as 

 

   
2

2 2
1

y
f

b
� �+ =� �
� �

 

 
, which is the equation of an ellipse, with a major axis of b/2 along the y-axis and a 
minor axis of 1 along the f-axis normal to y. 
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Equation (48) shows that the elliptic load distribution can be obtained for a wing with 
constant aerofoil section, lC , provided that the chord length of the wing has an 
elliptical span wise distribution. The Spitfire was a famous World War II fighter that 
had an elliptic planform, thus an elliptical distribution of span wise chord length. 
Further interesting information about the Spitfire can be gleaned from the following 
web sites 
 
http://142.26.194.131/aerodynamics1/Drag/Page6.html 
http://www.odyssey.dircon.co.uk/Spitfire_dev.htm 
http://www.centennialofflight.gov/essay/Theories_of_Flight/Reducing_Induced_Drag/TH16.htm 
http://www.glide.dyndns.org/on-the-wing4/ 
 
The tooling and other costs involved in the manufacture of elliptical wing were not 
and still not economical, thus the elliptical wing is no longer considered for 
production purposes.  
 
Tapered and Twisted Finite Wing 
 
It should be noted, however, that a simpler planform shape that is much easier and 
cheaper to manufacture, such as a simple tapered wing can be selected to give an 
almost elliptical wing load span wise distribution and thus minimizing the associated 
induced drag. Furthermore, equation (48) shows that even a rectangular wing can be 
designed to have an almost elliptical lift distribution by suitably varying the aerofoil 
or sectional shape and its local geometric angle of incidence (by twisting the wing), 
i.e. varying the span wise distribution of either or both α  and 0α , such that the local 

lift coefficient distribution, ( )lC y , approaches an elliptical distribution. 
 
Now it should be noted that equation (45) was derived without recourse to the 
possibility of simplifying the problem by taking advantage of the possibility that the 
lift distribution may be symmetrical. If the lift distribution is symmetrical, it was 
shown earlier that all the even numbered Fourier amplitudes are all zero. This means 
that the Oswald efficiency factor for a symmetrical lift distribution is given by 
 

  

( ) ( )
2 2/ 2 / 2

1 21 1

1 1

2 1 . 1 2 1 .
N N

n n

n n

e
A A

n n
A A= =

= =
� � � �

− + −� � � �
� � � �

� �
             (49) 

 
where nA for n = 1, 2, …,N/2 are the solutions of the system of equations (32). 
 
Another important point to note is the following. 
Generally speaking the lift coefficient for an aerofoil or 2-D wing is given by 
 

   ( ) ( )0 , 0. .l
l l

dC
C C

d αα α α α
α

= − = −  

 
The lift curve slope predicted by the inviscid potential flow theory has a value of 2π . 
However, real flows are viscous and the slope of the linear part of the lift curve of 
aerofoils in real flows, which can be measured in a wind tunnel test or computed 
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numerically using a viscous flow CFD software, actually has a value which is 
somewhat smaller than 2π . In equation (6) it has been assumed that the lift curve 
slope of the finite wing being analysed has a value of 2π . However, the lifting line 
equation (8) is not dependent on the choice of the value of the lift curve slope. 
Therefore, the results that are discussed above have a general validity regardless of 
whether we use a slope of 2π  or slightly less as obtained from wind tunnel testing or 
computed using viscous CFD software. If the information is available, it is better to 
use actual viscous lift curve slope values rather than 2π . The lifting line theory does 
not make any assumption regarding the viscosity of the flowing fluid. It does assume 
that if the aspect ratio is not too small (larger than 3), the flow over a finite wing may 
be assumed to be locally 2 dimensional, but it is then corrected slightly by considering 
the induced velocities at the wing caused by the vortex sheet shed at the trailing edge 
of the wing. In a true 2 dimensional flow there is no trailing vortex sheet to be 
considered. A major result that is obtained from the lifting line theory is the prediction 
of the induced drag, which is associated with the production of lift, not by the action 
of viscosity. It is predicted that the induced drag is proportional to the square of lift. 
Furthermore, the lifting line theory also predicts that the induced drag can be 
minimized by designing the wing (selecting the wing shape) such that the wing load 
or lift distribution along the span of the wing should approach as closely as possible 
the ideal elliptic distribution. This can be achieved by manipulating the major 
parameters of wing aerodynamic design, namely the aspect ratio, the wing planform 
shape, selection of suitably varying aerofoil cross sections along the span (thus 
varying the span wise distribution of the zero lift angle of attack) as well as twisting 
the wing such that the geometric angle of incidence of the aerofoils is not constant but 
is given by the following equation 
 
     ( )( ) root twisty yα α θ= +    (50) 
 
There are at least 2 different ways of twisting a finite wing. Firstly, the wing can be 
twisted along its trailing edge and keeping the leading edge of the wing straight. The 
other method is to twist the leading edge while keeping the trailing edge level and 
straight. Since the trailing edge of the wing usually has an attachment, such as flap 
and aileron, it may be desirable to keep the trailing edge level and straight. In the 
discussion below it is assumed that the trailing edge is kept level and straight, while 
the leading edge is twisted such that it is still straight but not level. The conclusion 
drawn will still be the same, though, if the leading edge is kept level and the trailing 
edge is twisted. 
 
Consider the initial situation where both the leading and trailing edges are straight and 
level. The angle of incidences of the aerofoil sections along the span obviously must 
all be equal, and given the symbol of rootα . Initially the leading edge point of any 
aerofoil must be at the same height as the trailing edge point. If the wing is given a 
wash out, it means that the wing is twisted such that the leading edge point of the tip 
aerofoil is now lower than its trailing edge point. Conversely if the wing is given a 
wash in twist distribution, then the leading edge of the tip aerofoil is now higher than 
its trailing edge. The trailing edge points remain at the same height, but the leading 
edge points now are aligned along a straight line, such that the height of any leading 
edge point relative to its trailing edge point is given by the following equation 
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2

( ) ( ) . tip

y
h y h y h

b
− = = −   for –b/2<y<0             (51) 

 
Now the twist angle, twistθ , is related to h(y) and the aerofoil’s chord length as follows 
 

  ( ) ( ) 1 1 2( )
sin sin .

( ) ( )
tip

twist twist

hh y y
y y

c y b c y
θ θ − − � �� �− −− = = = � �� �− −� � � �

            (52) 

 
Note that for a wash out twist the value of tiph is negative, and conversely it is positive 
for a wash in twist. 
 
In modelling the wing by a bound vortex and a trailing vortex sheet, it was assumed 
that the bound vortex is a straight line in the span wise direction, normal to the 
longitudinal direction, and located at the quarter chord line. This imposes a severe 
restriction on the allowable shape of the wing planform that can be analysed using the 
LLT (lifting line theory), namely that strictly speaking the wing must not be swept 
back or swept forward. Any amount of sweepback angle would mean that the bound 
vortex would now consist of two segments of straight lines, thus at a control point on 
the left wing we must consider the effect of the right wing segment of the bound 
vortex and vice versa. This would complicate the resulting lifting line equation 
considerably. However, it is expected that for a small sweep angle the associated error 
in neglecting the sweep effect would be small and can be ignored. Any wing planform 
shape can be analysed using LLT provided that the quarter chord line of the wing is 
normal or almost normal to the longitudinal axis. This means that the wing to be 
investigated may have a tapered shape, where the chord length at the wing tip is 
different (normally smaller) from the chord length at the wing root. It should be noted 
that in the aerodynamic study of wings, it is always assumed that the fuselage does 
not exist, such that the two halves of the wing are joined at the plane of symmetry, 
where y = 0. Thus the wing root is located at the plane of symmetry. 
A tapered wing normally has a distribution of chord length, which is a linear function 
of the distance along the wing span. But as far as the LLT method is concerned any 
kind of span wise distribution of the chord length is quite acceptable as long as the 
quarter chord line is straight and normal to the longitudinal axis. We shall limit our 
discussion below to the tapered planform shape where the chord length is distributed 
linearly, and getting smaller as the tip aerofoil is approached. The chord distribution 
for such a tapered wing is given by the following equation. 
 

  ( ) ( )
/ 2

tip root
root

c c
c y c y c y

b

−
− = = −     for –b/2<y<0             (53) 

The taper ratio λ is defined as the ratio of the tip chord to the root chord 
 

     tip

root

c

c
λ =                (54) 

 
Equation (53) can now be rewritten as follows 

  ( ) ( ) ( )2
1 1root

y
c y c y c

b
λ� �− = = − −� �

� �
  for  -b/2<y<0            (55) 
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As well as geometric twist, there is also aerodynamic twist, where the shape of the 
aerofoil cross section of the wing is smoothly varied, such that the zero lift angle of 
attack is no longer constant but is a function of span wise distance from the plane of 
symmetry of the aircraft. 
 

 
 

��������	�
���
����
�
��	���������

(Obtained from  http://www.centennialofflight.gov/essay/Theories_of_Flight/Reducing_Induced_Drag/TH16G5.htm ) 

 
 
By allowing aerofoil chord, c, geometric angle of incidence, α , and zero angle of 
incidence, 0α , to vary along the span wise direction, we must now generalize the 
Lifting Line Equation (27) for k = 1, 2, …, M as follows 
 

 ( ) ( ) ( )
0,

1 1

sin 2 12
sin 2 1 2 1 . .

sin

M M
k

m k m k k
m mk k

mb
A m m A

c

θ
θ α α

π θ= =

−
− + − = −� �          (56) 

 
The above equation can be written in a more compact form as follows 
 

    0,
1

.
M

km m k k
m

C A α α
=

= −�  for k = 1, 2,…,M            (57) 

 
where the matrix coefficient kmC  is defined as follows 
 

   
( ) ( )2 12

sin 2 1
sinkm k

k k

mb
C m

c
θ

π θ
−� �

= + −� �
� �

             (58) 
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2 1

1
2 2k

b k
y

M
−� �= − −� �

� �
                (59) 

    

   1 12 2 1
cos cos 1

2
k

k

y k
b M

θ − −− −� � � �= = −� �� �
� �� �

             (60)

   

   ( ) ( ) ( )2
1 1k

k k k root

y
c c y c y c

b
λ� �= − = = − −� �

� �
             (61) 

 

   1
,

2
sin .tip k

twist k
k

h y
b c

θ − � �
= −� �

� �
               (62) 

 
   ,k root twist kα α θ= +                 (63) 
 
The variation of the zero angle of attack, 0α , as a function of y is difficult to be 
expressed as a simple algebraic equation. The values of 0α  at the wing root and the 
wing tip must be specified. If the difference of the two angles is quite small, it may be 
reasonable to assume that 0α (y) can be approximated by a linear relationship. 

  ( )0, 0, 0, 0,

2 1
1

2k root tip root

k
M

α α α α−� �= + − −� �
� �

              (64) 

The system of equations (57) can be solved simultaneously to calculate the values of  
the Fourier amplitudes mA  for m = 1, 2, …,M. The wing load per unit span 
distribution can then be computed for each value of y using the following equation 
 

 
1

( ). ( ) 2 ( )
( ) 4 .sin((2 1) ( ))

M
l

m
m

c y C y y
Load y A m y

b bV
θ

=∞

Γ= = = −�              (65) 

 
The wing total lift coefficient is given by 
 
   1. .LC AR Aπ=                  (66) 
 
and the induced drag coefficient is given by 
 

   
2

. .
L

Di

C
C

AR eπ
=                  (67) 

 
where the Oswald efficiency factor, e, is computed as follows 
 

   ( )
2

2 1

2 1
M

m

m

A
m

A
δ

=

� �
= − � �

� �
�                (68) 

 

   
1

1
e

δ
=

+
                 (69) 
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In the above discussion we have taken advantage of the fact that the wing load span 
wise distribution is symmetrical about the plane of symmetry. The lifting line 
equation is applied at control points that are all on the left half (port) wing only, or 
within the range of values of y of –b/2<y<0. However, because of symmetry the 
distribution of wing load or lift on the starboard wing can be obtained by simply 
applying the property of a mirror image, namely f(y) = f(-y). 
 
If the wing load distribution is not symetrical then we must solve the full lifting line 
equation (17) rather than the simplified symmetrical version of equation (27). 
The overall procedure, however, remains basically the same. 
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