
Smart Internet
Appliance
Processor
(SIAP™)

AT75C1010 –
Telephony
Software
Module

Rev. 1786A–11/01
Features
• Software Module Dedicated to Telephony Signaling
• Optimized for the AT75 Series Smart Internet Appliance Processor (SIAP™)
• Includes Several Run-time Configurable Independent Algorithms

– Caller ID Type I (On-hook) and Type II (Off-hook)
– DTMF Generator
– DTMF Detector
– Arbitrary Tone Generator

• Compliant with ITU-T V.23 and Bell 202 Standards
• Available With a uClinux® Device Driver

Description
The AT75C1010 is a software module designed to run on the OakDSPCore® sub-
system of the AT75 Series Smart Internet Appliance Processor. It implements
commonly used telephony algorithms:

• A DTMF generator to dial phone numbers.

• A DTMF detector to decode incoming DTMF signaling.

• An arbitrary tone generator that can be used to generate any frequency during a
programmable duration.

• A Caller ID decoder that supports Type I and Type II, and two standard modulation
schemes (Bellcore and V.23).

All these algorithms have a number of parameters that can be programmed at run
time. These parameters modify the behavior of the DSP algorithms in such a manner
that they comply with the applicable standards under most situations. They also allow
the AT75C to cope with many non-standard situations often encountered on private
telephone networks.

The AT75C1010 takes advantage of the AT75 mailbox to exchange data with the on-
chip ARM7TDMI® core. The organization of the data communication channel makes it
easy to integrate the AT75C1010 interface into most operating systems.

For developers using uClinux, a specific device driver is supplied. It allows the uClinux
capabilities to be extended to the complete functionality of the AT75C1010 module in
a seamless manner.

This datasheet is made up of three sections:

• A functional description of the supported algorithms.

• A description of the low-level software interface.

• A description of the uClinux device driver.

Mixing low-level and driver-level programming should be avoided.
1

Functional
Description

A functional block diagram of the AT75C1010 module is given in Figure 1.

The various algorithms are independent. They can be enabled, disabled or programmed
individually.

Figure 1. AT75C1010 Block Diagram

DTMF Generator The DTMF is based on two individually programmable harmonic oscillators. Each of the oscil-
lators is assigned a DTMF band. The low-band oscillator can produce 697 Hz, 770 Hz, 852 Hz
or 941 Hz. The high-band oscillator can produce 1209 Hz, 1336 Hz, 1477 Hz, and 1633 Hz.

A DTMF signal is the sum of one frequency in the low group and one frequency in the high
group, thus leading to a total of sixteen different signals. Figure 2 shows a block diagram of
the DTMF generator. The power level for each tone, the tone duration and the silence
between tones are individually programmable to comply with the ITU-T standard. These
parameters are depicted in Figure 3.

The DTMF generator can be used for dialing, calling line identification, ASCII data transmis-
sion or remote control operations over the telephone network.

Figure 2. DTMF Generation Block Diagram

Line In

DTMF
Detection

Tone
Detection

Caller ID
Detection

DTMF
Generation

Tone
Generation

Line Out

Status

DTMF Signal
Timing

Low Group
Frequency

High Group
Frequency

Low Group
Level

High Group
Level

DTMF
Duration

Silence
Duration
2 AT75C1010
1786A–11/01

AT75C1010
Figure 3. DTMF Signal Characteristics

DTMF Detector The DTMF detection task detects and decodes the 16 standard DTMF signals, in compliance
with the ITU-T Q.24 recommendation, with programmable threshold levels. The application
program, to comply with special (i.e. non-standard) situations, can tune some parameters of
the algorithm. In order to detect the DTMF signal, a bank of eight resonant band pass filters is
used. The central frequency of each filter corresponds to one of the eight nominal values
employed by standard DTMF generators. The power level at each filter output is used to check
for signal presence, signal condition requirements, and character condition requirements.

Figure 4 illustrates a block diagram of the DTMF detector.

Figure 4. DTMF Detection Block Diagram

Frequency

Level/dB

RefLevel

DTMFGEN_LOW DTMFGEN_HIGH

Signal

Time

DTMFGEN_DURATION DTMFGEN_
SILENCE

Line Signal DTMF Silence
Line

Signal

Start Request
Issued Status Issued

DTMF Generation Spectrum

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Power
Level

Signal
Condition
Detector

Out of Band
Rejection

Signal
In

Character
Condition Status

697 Hz

770 Hz

852 Hz

941 Hz

1209 Hz

1336 Hz

1477 Hz

1633 Hz
3
1786A–11/01

The eight band pass filters are centered on the eight frequencies defined in the ITU-T Q.24
specification. The bandwidth is specified according to the tolerance established in this stan-
dard. Each filter rejects at least 20 dB of the other seven frequencies.

The power level is obtained by averaging the instantaneous energy during a window of 2 ms
for each of the eight filtered signals.

The detection of a DTMF signal requires that the following conditions be met:

• One frequency of each group is above a specified level.

• The power level difference between the low group tone and the high group tone is within a
given interval (twist).

• The power level of the highest tone of each group is above a specified level above the
other frequencies of the same group.

The character condition is fulfilled when:

• The signal condition is preceded by a different character recognition condition or by the
continuous non-existence of a signal condition for a specified duration (silence).

• The signal condition for the same two tones exists continuously for a specified duration.

When the signal condition is satisfied for less than a specified duration, the character is
rejected. Once the character condition exists, it is unaffected by an interval shorter than a
specified duration.

Tone Generator The tone generation task generates a pure sine wave with programmable frequency, ampli-
tude and duration.

Caller ID Decoder This task, when activated, supervises the telephone line-in input signal and looks for a Caller
ID message.

The functions included in this task are:

• Detection of the “Dual Tone Alerting Signal”

• Detection of the “Channel Seizure Signal”

• Detection of the loss of carrier event

• Detection of the message bytes and framing verification

• Timing supervision

Two modulation standards are used for the Caller ID function: ITU-T V.23 and Bell 202.

The Caller ID can be programmed in the following three modes:

• Optimized for V.23 demodulation

• Optimized for Bell 202 demodulation

• Compromise demodulation

In the first case, the system is fully optimized for the demodulation of the V.23 scheme, and it
can be used with a slight degradation to detect Bell 202 modulation. Conversely, the same
degradation is suffered when a Bell 202 demodulator is used to detect a V.23 modulation. In
the third mode, a sub-optimal demodulator for both modulations is used.

Figure 5, Figure 6 and Figure 7 depict the different tunable parameters of the Caller ID
algorithm.
4 AT75C1010
1786A–11/01

AT75C1010
Figure 5. Caller ID Algorithm – 1 (1)

Note: 1. Where:
t1 = min time for recognize DTAS
t2 = max time allowed to DTAS
t3 = timeout after loss of DTAS, waiting Channel Seizure
t4 = timeout after Channel Seizure, waiting Mark signal
t5 = validation time of Mark signal
t6 = timeout for the reception of the first character (Caller ID message type)

Figure 6. Caller ID Algorithm – 2

Figure 7. Caller ID Algorithm – 3

t1 t2 t3 t4 t5 t6

DTAS
Channel
Seizure

Mark
Signal Caller ID Message

Signal

Ref Level

Level

Twist

Frequency

Level(dB) DTAS Spectrum

Level(dB)

Time

Carrier Power

Ref Level

Detection Level

Loss Level
5
1786A–11/01

Low-level
Interface

This section describes how the AT75C1010 software is uploaded into the DSP subsystem pro-
gram memory. It also describes how the application software running on the ARM® and the
AT75C1010 running on the DSP subsystem exchange information through the mailboxes.

This section assumes an in-depth knowledge of the ARM/DSP subsystem interface mailbox
system (DPMB).

Telephony
Program Upload

While the DSP subsystem is held in reset, its program memory is made visible in the ARM
memory space. This allows the ARM application to write a binary image of the DSP software
very easily.

When the DSP subsystem is taken out of reset, its program memory is switched from the ARM
memory space back to the DSP program space just before the first instruction is fetched.

This process is illustrated in Figure 8.

Figure 8. Telephony Program Upload

Upload Process A typical DSP program uses a number of initialized variables. Typically, the initial values are
stored in the program space, and copied into their RAM location by the DSP start-up routine.

When the software is ready to work, it sends a SW_INIT_DONE status message through the
status mailbox.

The mailbox operation and status messages are described in the section “Mailbox Usage” on
page 7.

Binary Image Format When the system is idle, the AT75C1010 module is stored in the ARM memory space, possi-
bly in nonvolatile memory. The module contains the AT75C1010 flat binary image.

ASB

ARM
Core

Reset

OakB
Subsystem

SIAP_MDRB

X-RAM Y-RAM

P-Bus

OakB Program
Memory
6 AT75C1010
1786A–11/01

AT75C1010
DPMB
Configuration

The DPMB is programmed in configuration 2 (see AT75C DSP subsystem datasheet, litera-
ture number 1368), which leads to the configuration specified in Table 1.

Note: 1. Base address is 0xfa000000 for OakA, 0xfb000000 for OakB.

All the mailboxes allow read/write access from both sides. Arbitration is done by using the
semaphores.

Mailbox Access

ARM to Oak Mailboxes Before accessing the ARM->Oak mailboxes, the ARM must check that the corresponding
semaphore is cleared to 0. Then it can read or write the mailbox data. When the data access is
done, it must set the semaphore to 1 to notify the Oak that new data has arrived

Oak to ARM Mailboxes The ARM is notified that new data is available in a mailbox when the corresponding sema-
phore is raised to 1, possibly triggering an interrupt. Then the ARM can access the mailbox.
When the access is finished, the ARM must clear the semaphore to release the mailbox.

Mailbox Usage This section describes the specific purpose of each mailbox. The exchanged information is
formatted in structured messages. The message format and semantics are described in sec-
tions “Request Notification Messages” on page 9 and “Status Notification Messages” on page
14.

Mailbox 2: Oak
Memory Access

The ARM has the ability to send requests to read or write any location of the DSP memories,
either in program or data space. This is useful for two purposes:

• DSP software debug

• Programming of the DSP peripherals under the ARM application control

Mailbox 6: Request
Notification

This mailbox is used by the ARM to pass requests to the DSP. These requests trigger specific
tasks in the DSP software. For example, request notification messages are used to start or to
stop the telephony algorithms.

Mailbox 7: Status
Notification

This mailbox is used by the DSP software to send status information. For example, a status
notification message is sent by the DSP software at the end of the DSP software initialization
to notify the ARM application that the software is ready to execute tasks.

Table 1. DPMB Configuration

Mailbox # Offset from Base(1) Length Direction Semaphore Address(1) Usage

0 0x000 0x80 ARM -> Oak 0x200 Unused

1 0x080 0x80 ARM <- Oak 0x204 Unused

2 0x100 0x40 ARM -> Oak 0x208 DSP memory access

3 0x140 0x40 ARM -> Oak 0x20C Unused

4 0x180 0x20 ARM -> Oak 0x210 Unused

5 0x1A0 0x20 ARM <- Oak 0x214 Unused

6 0x1C0 0x20 ARM -> Oak 0x218 Request notification

7 0x1E0 0x20 ARM <- Oak 0x21C Status notification
7
1786A–11/01

Oak Memory
Access

The ARM has the ability to send requests to read or write any location of the Oak memories,
either in program or data space. To achieve this, the Mailbox 2 is divided into four fields:

• Command field (mailbox base + 0): This is a request ID that tells what kind of operation is
to be performed. Valid codes are:

– 0x0001: Program memory read

– 0x0002: Program memory write

– 0x0003: Data memory read

– 0x0004: Data memory write

• Address field (base + 1 16-bit word): Should be written with the address location to be
accessed. This is the value of the address as it is seen by the Oak.

• Length field (base + 2 16-bit words): Should be written with the number of consecutive
locations to access.

• Data field (base + 3 16-bit words and subsequent): For write access, should be filled with
the values to write. For read access, contains the read values requested by the previous
command.

Example of use: Write 0x1234 into data location 0xabcd of the OakB:

1. Wait for *(0xfb000208) = 0, i.e., the semaphore is cleared

2. *(0xfb000100) = 0x0004 // data write command

3. *(0xfb000102) = 0xabcd // this is the address

4. *(0xfb000104) = 0x0001 // only one word to write

5. *(0cfb000106) = 0x1234 // this is the value

6. *(0xfb000208) = 1 // notify the OakB

Example of use: Read data locations 0xabcd and 0xabce from OakB:

1. Wait for *(0xfb000208) = 0, i.e. the semaphore is cleared

2. *(0xfb000100) = 0x0003 // data read command

3. *(0xfb000102) = 0xabcd // this is the first address to read

4. *(0xfb000104) = 0x0002 // two words to read

5. *(0xfb000208) = 1 // notify the OakB

6. Wait for the semaphore to be back to 0

7. Read 0xfb000106 and 0xfb000108 to get the requested values
8 AT75C1010
1786A–11/01

AT75C1010
Request
Notification
Messages

Request messages are used by the ARM to trigger specific tasks running on the DSP. These
messages are always formatted in the same way. Figure 9 describes this format.

Figure 9. Request Notification Message Format

A message always begins with a LENGTH field. This field contains the number of words of the
message, excluding the LENGTH field itself.

The REQUEST_ID field is uniquely defined to designate the type of request. Each request can
be followed by a variable but well-defined number of PARAMETER fields. These fields contain
additional data needed to handle the request.

The description of the supported request messages is listed below. It is forbidden for the ARM
application to issue unsupported messages. However, should the ARM application issue an
unsupported or malformed request, the Oak software must recover gracefully.

Tone Generation
Configuration Request

Mailbox Base Address

LENGTH Words

LENGTH

REQUEST_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits

Table 2. Tone Generation Configuration Request

Word 0 0x0007 Message length = 0x0007

Word 1 0x0800 Request ID = 0x0800

Word 2 32768 * cos (pi* TONE_FREQ /4000) Words 2 and 3 define the frequency of the
generated tone

Word 3 32768 * sin (pi* TONE_FREQ /4000)

Word 4 TONE_LEVEL = 32768 * 10E(dB/20) Level of the generated tone

Word 5 TONE_DURATION Duration of the generated tone in
milliseconds 0x0000 means unlimited
duration

Word 6 SILENCE_DURATION Duration of the silence following the tone in
milliseconds 0x0000 means unlimited
duration

Word 7 TONE_START Bit 0: 0 causes the generator to wait for a
tone generation start request (request ID
0x0801) before the tone is generated;

1 causes the generation to start immediately
Bit 1: 0: the tone is added to all other signals
emitted on the speaker;
1: all other signals are blocked while the tone
is emitted.
9
1786A–11/01

Example: 0x0007 0x0801 0x5A82 0x5A83 0x4000 0x0080 0x0080 0x0003

This message configures the generator to emit a 1024 Hz tone 6 dB below the reference level.
The tone is emitted as soon as the DSP unit receives the request. After 128 ms of signal and
128 ms of silence, a tone generation done status messageis emitted.

Tone Generation Start
Request

The tone starts as soon as the DSP unit receives this request.

A tone generation configuration request (request ID 0x0800) should be issued before the tone
generation start request is sent. If not, the behavior of the tone generator is unpredictable.

Tone Generation Stop
Request

The tone stops as soon as the DSP unit receives this request. This request can be used to
stop an unlimited tone generation, or to halt the generator before the predefined duration has
elapsed (early termination).

DTMF Generation
Configuration Request

Example: 0x0005 0x0820 0x2414 0x2D6B 0x0064 0x0064

This message configures the DTMF generator with a Low Group level 11 dB below the refer-
ence level and with a High Group level 9 dB below the reference level. The signal and the
silence last for 100 ms.

Table 3. Tone Generation Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0801 Request ID = 0x0801

Table 4. Tone Generation Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0802 Request ID = 0x0802

Table 5. DTMF Generation Configuration Request

Word 0 0x0005 Message length = 0x0005

Word 1 0x0820 Request ID = 0x0820

Word 2 DTMF_GEN_LOW= 32768 *
10E(dB/20)

Low Group Level

Word 3 DTMF_GEN_HIGH= 32768 *
10E(dB/20)

High Group Level

Word 4 DTMF_GEN_DURATION Duration of signal in milliseconds. 0x00
means unlimited duration.

Word 5 DTMF_GEN_SILENCE Duration of silence in milliseconds. 0x00
means unlimited duration.
10 AT75C1010
1786A–11/01

AT75C1010
DTMF Generation
Start Request

Digit Codes of DTMF
Tones

Table 7. Digit Codes of DTMF Tones

Table 7 shows the attribution of the digit codes to each of the sixteen possible DTMF tones.

Example: 0x0002 0x0821 0x000A generates DTMF “0”.

When emitting several DTMF tones, it is important to wait for the previous DTMF generation
status before the next one is started (Status ID = 0x8821). Otherwise the timing specified in
the DTMF generation configuration request is not respected.

DTMF Generation Stop
Request

The DTMF stops as soon as the DSP unit receives this request. This request can be used to
stop an unlimited DTMF generation, or to halt the generator before the predefined duration
has elapsed (early termination).

Table 6. DTMF Generation Start Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0821 Request ID = 0x0821

Word 2 DTMF_DIGIT_CODE DTMF digit code wanted

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 0x01 2 0x02 3 0x03 A 0x0D

770 Hz 4 0x04 5 0x05 6 0x06 B 0x0E

852 Hz 7 0x07 8 0x08 9 0x09 C 0x0F

941 Hz * 0x0B 0 0x0A # 0x0C D 0x00

Table 8. DTMF Generation Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0822 Request ID = 0x0822
11
1786A–11/01

DTMF Detection
Configuration Request

Example: 0x0009 0x0830 0x0020 0x0020 0x2000 0x2000 0x4000 0x4000 0x001E 0x001E.

This message configures the DTMF detector with a detection level of 33 dB below the refer-
ence level for each group. The minimum difference level between the strongest frequency in a
group and the other of the same group must be at least of 18 dB. The maximum difference
level between the two groups must be at most of 12 dB. The signal must at least last for 30 ms
and so on for silence, in order to recognize a character.

DTMF Detection Start
Request

The DTMF detection is started as soon as the DSP unit receives this request.

DTMF Detection Stop
Request

The DTMF detection is stopped as soon as the DSP unit receives this request.

Table 9. DTMF Detection Configuration Request

Word 0 0x0009 Message length = 0x0009

Word 1 0x0830 Request ID = 0x0830

Word 2 DTMF_DET_LOWTHRES
= 65535 * 10E(dB/10)

Low Group Power Detection Threshold

Word 3 DTMF_DET_HIGHTHRES
= 65535* 10E(dB/10)

High Group Power Detection

Word 4 DTMF_DET_LOWREL
= 65535* 10E(dB/20)

Minimum difference level between the
strongest frequency in the low group and the
other of the same group

Word 5 DTMF_DET_HIGHREL
= 65535* 10E(dB/20)

Minimum difference level between the
strongest frequency in the high group and
the other of the same group

Word 6 DTMF_DET_POSTWIST
= 65535* 10E(dB/10)

Maximum Low-to-high twist

Word 7 DTMF_DET_ NEGTWIST
= 65535* 10E(dB/10)

Maximum High-to-low twist

Word 8 DTMF_DET_DURATION Duration of signal condition for character
recognition in milliseconds.

Word 9 DTMF_DET_SILENCE Duration of silence condition for character
recognition in milliseconds.

Table 10. DTMF Detection Start Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0831 Request ID = 0x0831

Table 11. DTMF Detection Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0832 Request ID = 0x0832
12 AT75C1010
1786A–11/01

AT75C1010
Caller ID
Configuration Request

Caller ID Start Request

The Caller ID detection is started as soon as this request is received by the DSP unit. Setting
the proper value in Word 2 (i.e. 0x0002) enables DTAS detection.

Table 12. Caller ID Configuration Request

Word 0 0x000F Message length = 0x000F

Word 1 0x0810 Request ID = 0x0810

Word 2 CALLER_ID_STD Demodulation standard (0: V.23 ITU-T; 1:
Bell 202; 2: compromise)

Word 3 CALLER_ID_DTAS_OK Minimum time for recognize DTAS
[hundredths of second]

Word 4 CALLER_ID_DTAS_LENGTH Maximum time allowed to DTAS [hundredths
of second]

Word 5 CALLER_ID_WCSZ Timeout after loss of DTAS waiting channel
seizure [hundredths of second]

Word 6 CALLER_ID_WMS Timeout after channel seizure waiting the
Mark signal [hundredths of second]

Word 7 CALLER_ID_VALID_MS Validation time of the mark signal
[hundredths of second]

Word 8 CALLER_ID_TIMEOUT_CHAR Timeout for reception of first character
(message type) [hundredths of second]

Words 9:10 CALLER_ID_DTAS_THRES
= 536870912 * 10E(dB/10)

Threshold level of each tone of DTAS
(power)

Words 11 CALLER_ID_TWIST
= 65535 * 10E(dB/10)

Twist between the two tones (power)

Words 12:13 CALLER_ID_CARRIER_THRES
= 822083584 * 10E(dB/10)

Threshold for carrier detection (power)

Words 14:15 CALLER_ID_ CARRIER_LOSS
= 822083584 * 10E(dB/10)

Threshold for carrier loss (power)

Table 13. Caller ID Start Request

Word 0 0x0002 Message length = 0x0002

Word 1 0x0811 Request ID = 0x0811

Word 2 CALLER_ID_START Bit 0: -

Bit 1: 1 for enable DTAS detection; 0 for
disable
13
1786A–11/01

Caller ID Stop Request

The Caller ID detection is stopped as soon as this request is received by the DSP unit.

Status Notification
Messages

Status messages are used by the Oak to inform the ARM application that a specific event has
occurred, or to respond to an earlier request. Those messages are always formatted in the
same way. Figure 10 describes this format.

Figure 10. Status Notification Message Format

A status message always begins with a LENGTH field. This field contains the number of words
of the message, excluding the LENGTH field itself.

The STATUS_ID field is uniquely defined to designate the type of status. Each status can be
followed by a variable but well-defined number of PARAMETER fields. These fields contain
additional status information.

The description of the supported status messages is listed below. It is forbidden for the Oak
program to issue unsupported status messages. However, should the Oak program issue an
unsupported or malformed status message, the ARM application must recover gracefully.

Telephony Module
Initialization Status

This message is issued when the telephony module has finished initializing itself and is ready
to accept request messages. The ARM should not issue any request messages before this
status message has been received.

Bad Format Status The Oak issues this message when it has received a request message in which the LENGTH
field is not compatible with the request type. The Oak ignores the corresponding malformed
request.

Table 14. Caller ID Stop Request

Word 0 0x0001 Message length = 0x0001

Word 1 0x0812 Request ID = 0x0812

Mailbox Base Address

LENGTH Words

LENGTH

STATUS_ID

PARAMETER[0]

...

PARAMETER[LENGTH - 2]

unused...

16 Bits

Table 15. Telephony Module Initialization Status

Word 0 LENGTH Message length = 0x0001

Word 1 SW_INIT_DONE_ID Status ID = 0x8002

Table 16. Bad Format Status

Word 0 LENGTH Message length = 0x0002

Word 1 BAD_FORMAT_ID Status ID = 0x80FF

Word 2 BAD_FORMAT_VALUE Contains the request ID of the malformed
request message
14 AT75C1010
1786A–11/01

AT75C1010
Unknown Request
Status

The Oak issues this message when it has received a request message with an unsupported
request ID field.

Bad Parameter Status The Oak issues this message when it has received a request message with a parameter hav-
ing an invalid value.

Tone Generation
Status

This message is issued when the tone duration has elapsed. It is not issued if the tone was
stopped by a tone generation stop request (request ID 0x0802).

DTMF Generation
Status

This message is issued (DTMF_GEN_DURATION + DTMF_GEN_SILENCE) milliseconds
after a DTMF generation start request has been emitted. It is not issued if the DTMF genera-
tion is stopped by a stop request.

DTMF Detection
Status

This message is issued each time a valid DTMF digit is detected on the line-in input signal.

Table 7 on page 11 shows the attribution of the digit codes to each of the sixteen possible
DTMF tones.

Table 17. Unknown Request Status

Word 0 LENGTH Message length = 0x0002

Word 1 UNKNOWN_REQ_ID Status ID = 0x80FE

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed
request message

Table 18. Bad Parameter Status

Word 0 LENGTH Message length = 0x0002

Word 1 UNKNOWN_REQ_ID Status ID = 0x80FD

Word 2 UNKNOWN_REQ_VALUE Contains the request ID of the malformed
request message

Table 19. Tone Generation Status

Word 0 0x0001 Message length = 0x0001

Word 1 0x8802 Status ID = 0x8802

Table 20. DTMF Generation Status

Word 0 0x0001 Message length = 0x0001

Word 1 0x8822 Status ID = 0x8822

Table 21. DTMF Detection Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x8831 Status ID = 0x8831

Word 2 DTMF_DET_DIGIT Detected DTMF digit
15
1786A–11/01

Caller ID Exit Status This message is issued when the task ends due to an abnormal situation or at the end of
reception. Note that when the ARM receives such a status, a Caller ID Stop Request should
be sent to the Oak to free the DSP from Caller ID task.

DTAS Detected Status This message is issued when the DTAS is detected if the feature is enabled (see Caller ID
Start Request, ID 0x0811).

Received Character
Status

This message is issued each time a character is received.

Table 22. Caller ID Exit Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x8813 Status ID = 0x8813

Word 2 CALLER_ID_EXIT Exit code:
1 = loss of carrier
2 = time-out: no channel seize

3 = time-out: no message type
4 = framing error

Table 23. DTAS Detected Status

Word 0 0x0001 Message length = 0x0001

Word 1 0x8811 Status ID = 0x8811

Table 24. Received Character Status

Word 0 0x0002 Message length = 0x0002

Word 1 0x8812 Status ID = 0x8812

Word 2 CALLER_ID_CHAR Received character
16 AT75C1010
1786A–11/01

AT75C1010
AT75C1010
Device Driver

The AT75C1010 software module is supplied with the device driver for uClinux. This device
driver enables the application developer to integrate all the AT75C1010 functionality into the
uClinux kernel. All the features of the AT75C1010 modules can be accessed through the stan-
dard uClinux API. This section documents this API.

Under uClinux, the device drivers are accessed through filesystem entries. The AT75C1010
device driver is a character type driver. The associated virtual file can be opened, read from,
written to and closed like any regular file. The major role of the device driver is to redefine the
file access methods, so that the application can interact with the underlying device as if it were
a file through the standard file manipulation functions. It provides the application with an
abstraction layer which hides the low level interface on top of which it sits.

The AT75C1010 device driver is operated through two filesystem entries, /dev/cid and
/dev/dtmf. The former is used for Caller ID operations, the latter id used for DTMF operations.
The tone generator can be used through both filesystem entries.

DTMF Driver
Operations

The DTMF part of the driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode)

• int read(int fd, void *buf, int count)

• int write(int fd, void *buf, int count)

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

• int close(int fd)

Additionally, the ioctl function allows control of additional features of the AT75C1010 which are
not accessible with the read or write methods. Those special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp)

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description The /dev/dtmf virtual file must be opened prior to any operation on the DTMF device driver.
This is done with the open method, just like for any regular file. The main operation performed
by the open method of the device driver is to load and initialize the corresponding DSP soft-
ware in the DSP subsystem.

When this initialization is successful, the open system call converts the file path name
("/dev/dtmf" in this case) into a file descriptor. This file descriptor is a non-negative integer that
is used in subsequent I/O operations such as with read, write, etc.

Flags is one of O_RDONLY, O_WRONLY or O_RDWR which request opening the file read-
only, write-only or read/write, respectively.

Flags may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor any
subsequent operation on the file descriptor which is returned causes the calling process to
wait.
17
1786A–11/01

Return Values Open returns the new file descriptor, or -1 if an error occured. In the latter case, the global vari-
able errno is set appropriately to reflect the cause of error. Possible values of errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not supported.
One reason can be a corruption of the binary DSP software which could not be loaded into
the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process using
the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when the
system memory is full.

Example int fd = open("/dev/dtmf", O_RDWR | O_NONBLOCK);

This opens the DTMF device driver in read/write mode. It selects non blocking I/O for read and
write operations. The file descriptor is returned in fd. If fd is positive, the DTMF device is
readily available for read and write operations.

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the DTMF device is not needed any longer by the application, it can be closed to
release system resources. This is done through the close method. The parameter is the file
descriptor of the file to be closed.

Return Values Close returns 0 on success, or -1 if an error occured. In the latter case the global variable
errno is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that fd is not a valid file descriptor.

Example close(fd);

This closes the DTMF device previously opened.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read method attempts to read count bytes from fd into the buffer
starting at buf. When fd is a file descriptor attached to /dev/dtmf, the bytes read correspond to
the DTMF digits recognized by the DTMF decoding device. Table 7 on page 11 gives the map-
ping between the value of each byte and the DTMF digit.

Both blocking and non-blocking reads are supported. In blocking mode, read returns only
when there is a DTMF digit available to read. Although the process is blocked, it is safely put
on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available. In
this case, the return value is -1 and errno is set to EAGAIN.

Return Values On success, the number of bytes read is returned. It is not an error if this number is smaller
than the number of bytes requested. This may happen, for example, because fewer bytes are
actually available at the time, or because read was interrupted by a signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno are as follows:
18 AT75C1010
1786A–11/01

AT75C1010
• EAGAIN: non-blocking I/O has been selected using O_NONBLOCK and no data was
immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: The /dev/dtmf file was not open for reading.

• EFAULT: buf is ouside the accessible address space.

Example readcount = read(fd, buf, 12);

This reads at most 12 bytes from file descriptor fd (assumed here to be related to /dev/dtmf),
and stores them in the memory location pointed to by buf.

Write Method

Synopsis #include <unistd.h>

int write(int fd, void *buf, int count);

Description As for any file descriptor, the write method attempts to write count bytes from the buffer start-
ing at buf to the file descriptor fd. When fd is a file descriptor attached to /dev/dtmf, the bytes
written correspond to the DTMF digits which are to be emitted by the DTMF generation device.
Table 7 on page 11 gives the mapping between the value of each byte and the DTMF digit.

Both blocking and non-blocking writes are supported. In blocking mode, write returns only
when the DTMF device is ready to accept data. Although the process is blocked, it is safely
put on a system wait queue and does not consume CPU time.

In non-blocking mode, the write function returns immediately even if no data is available. In
this case the return value is -1 and errno is set to EAGAIN. In most cases, the application
retries to write until the entire data set is transferred.

Return Values On success, the number of bytes written is returned. This corresponds to the number of DTMF
digits actually emitted. It is not an error if this number is smaller than the number of bytes
requested. This may happen for example because fewer bytes are actually acceptable at the
time due to lack of memory, or because write was interrupted by a signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno are as follows:

• EAGAIN: Non-blocking I/O has been selected using O_NONBLOCK and no data was
immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: The /dev/dtmf file was not open for reading.

• EFAULT: buf is ouside the accessible address space.

Example char Emergency[] = "\x09\x01\x01";

ret = write(fd,emergency, 3);

This dials the 911 emergency phone number.
19
1786A–11/01

Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout);

Description Select waits for a number of file descriptors to change status. The main use of select is to
check if data (DTMF digits) is available for read (DTMF detected) or write (DTMF to be emit-
ted) without having to actually read or write the data. In particular, when the blocking operation
is selected, it allows the user to know if a read or write access will block or not. This is similar
to a polling operation.

Three independent sets of descriptors are monitored. Those listed in readfds are watched to
see if characters become available for reading, those in writefds are watched to see if a write
will not block, and those in exceptfds are watched for exceptions. On exit, the sets are modi-
fied in place to indicate which descriptors actually changed status.

Four macros are provided to manipulate the sets. FD_ZERO clears a set. FD_SET and
FD_CLR add or remove a given descriptor from a set. FD_ISSET tests to see if a descriptor is
part of the set; this is useful after select returns.

n is the highest-numbered descriptor in any of the three sets, plus 1.

timeout is an upper bound on the amount of time elapsed before select returns. It may be
zero, causing select to return immediately. If timeout is NULL (no timeout), select can
block indefinitely.

Return Values If successful, select returns the number of descriptors contained in the descriptor sets, which
may be zero if the timeout expires before anything of interest happens. On error, -1 is
returned, and errno is set appropriately. The sets and timeout become undefined, so their con-
tents should not be relied on after an error.

Example fd_set wfds;

struct timeval tv;

int retval;

/* initialize file descriptor list*/

FD_ZERO(&wfds);

FD_SET(df, &wfds);

/* define delay */

tv.tv_sec = 5;

tv.tv_usec = 0;

retval = select(df+1, NULL, &wfds, NULL, &tv); //df supposed to be a file
descriptor related to /dev/dtmf

if (retval > 0)

printf("Ready to send DTMF.\n");

else

printf("Couldn't send DTMF during 5 seconds.\n");

This code checks if a DTMF can be emitted. The timeout is 5 seconds.
20 AT75C1010
1786A–11/01

AT75C1010
Ioctl Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

Description The ioctl function manipulates the underlying device parameters of the DTMF generator and
detector. Additionally, the arbitrary tone generator is controlled trough an ioctl request.

fd is the file descriptor upon which ioctl acts. It is related to the /dev/dtmf virtual file.

Request defines which predefined command to send to the DTMF device. Some commands
may require additional arguments which are stored or received in the buffer pointed to by argp.
The ioctl requests supported by the DTMF device driver are described below:

• DTMF_DET_START: This command is sent to start a DTMF detection. There are no
additional arguments.

• DTMF_DET_STOP: This command is sent to stop a DTMF detection. There are no
additional arguments.

• DTMF_GEN_CONFIG: This command is used to configure the characteristics of the
DTMF signals. An additional parameter is used as defined below:
struct t_dtmf_gen_args {

unsigned short dtmf_gen_low;

unsigned short dtmf_gen_high;

unsigned short dtmf_gen_duration;

unsigned short dtmf_gen_silence;

};

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 6.

DTMF_DET_CONFIG: This command is used to configure the characteristics of the DTMF
detector. An additional parameter is used as defined below:

struct t_dtmf_det_args{

unsigned short dtmf_det_lowthres;

unsigned short dtmf_det_highthres;

unsigned short dtmf_det_lowrel;

unsigned short dtmf_det_highrel;

unsigned short dtmf_det_postwist;

unsigned short dtmf_det_negtwist;

unsigned short dtmf_det_duration;

unsigned short dtmf_det_silence;

};

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 6.

TONE_GEN_CONFIG: This command is used to configure the characteristics of the arbitrary
tone signals. An additional parameter is used as defined below:

struct t_tone_gen_args{

unsigned short tone_cosw;

unsigned short tone_sinw;

unsigned short tone_level;

unsigned short tone_duration;

unsigned short silence_len;

unsigned short tone_start;

};
21
1786A–11/01

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 6.

TONE_GEN_START: This command is sent to start the generation of a tone immediately.
There is no additional argument.

TONE_GEN_STOP: This command is sent to stop the generation of a tone immediately.
There is no additional argument.

Example struct t_dtmf_gen_args {

unsigned short dtmf_gen_low;

unsigned short dtmf_gen_high;

unsigned short dtmf_gen_duration;

unsigned short dtmf_gen_silence;

} * dtmf_gen_args;

dtmf_gen_args->dtmf_gen_low = 0x2414; // -11 dB below reference level

dtmf_gen_args->dtmf_gen_high = 0x2d6b; // -9 dB below reference level

dtmf_gen_args->dtmf_gen_duration = 100; // milliseconds

dtmf_gen_args->dtmf_gen_silence = 100; // milliseconds

ioctl(fd, DTMF_GEN_CONFIG, dtmefgen_args);

This configures the signal characteristics of the DTMF generator for a standard operation.
22 AT75C1010
1786A–11/01

AT75C1010
Caller ID Driver
Operations

The Caller ID part of the driver redefines the following file manipulation functions:

• int open(const char *path, int flags, mode_t mode)

• int read(int fd, void *buf, size_t count)

• int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout)

• int close(int fd)

Additionally, the ioctl function allows control of additional features of the AT75C1010 which are
not accessible with the read or write methods. These special commands are described below.
The prototype of the ioctl function is:

• int ioctl(int fd, int request, char *argp)

Open Method

Synopsis #include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *path, int flags);

Description The /dev/cid virtual file must be opened prior to any operation on the Caller ID device driver.
This is made with the open method, just like for any regular file. The main operation performed
by the open method of the device driver is to load and initialize the corresponding DSP soft-
ware in the DSP subsystem.

When this initialization is successful, the open system call converts the file path name
(“/dev/cid” in this case) into a file descriptor. This file descriptor is a non-negative integer which
is used in subsequent I/Os as with read, write, etc.

In particular case of Caller ID device opening flags is O_RDONLY which request opening the
file in read-only mode, because there is no need to send Caller ID characters.

flags may also be bitwise-or'd with O_NONBLOCK. In this case, neither the open nor any sub-
sequent operations on the file descriptor returned causes the calling process to wait.

Open return the new file descriptor, or -1 if an error occured. In the latter case, the global vari-
able errno is set appropriately to reflect the cause of error. Possible values of errno are:

• ENODEV: This indicates that the underlying hardware does not exist or is not supported.
One reason can be a corruption of the binary DSP software which could not be loaded into
the DSP subsystem.

• EBUSY: The underlying hardware is busy. Most probably there is another process using
the same resource.

• ENOMEM: A memory allocation requested by the driver failed. This happens when the
system memory is full.

Example int fd = open("/dev/cid", O_RDONLY | O_NONBLOCK);

This opens the Caller ID device driver in read-only mode. It selects non blocking I/O for read
operations. The file descriptor is returned in fd. If fd is positive, the Caller ID device is readily
available for read operations.
23
1786A–11/01

Close Method

Synopsis #include <unistd.h>

int close(int fd);

Description When the Caller ID device is not needed any more by the application, it can be closed to
release system resources. This is done through the close method. The parameter is the file
descriptor of the file to be closed.

Return Values close returns 0 on success, or -1 if an error occurred. In the latter case the global variable
errno is set appropriately to reflect the cause of error. The only possible value for errno is
EBADF which means that fd is not a valid file descriptor.

Example close(fd);

This closes the Caller ID device previously opened.

Read Method

Synopsis #include <unistd.h>

int read(int fd, void *buf, int count);

Description As for any file descriptor, the read method attempts to read count bytes from fd into the buffer
starting at buf. When fd is a file descriptor attached to /dev/cid, the bytes read correspond to
the Caller ID character received by the Caller ID device.

Both blocking and non-blocking reads are supported. In blocking mode, read returns only
when there is a Caller ID character available to read. Although the process is blocked, it is
safely put on a system wait queue and does not consume CPU time.

In non-blocking mode, the read function returns immediately even if no data is available. In
this case the return value is -1 and errno is set to EAGAIN.

Return Values On success, the number of bytes read is returned. It is not an error if this number is smaller
than the number of bytes requested. This may happen, for example, because fewer bytes are
actually available at present, or because read was interrupted by a signal.

On error, -1 is returned and errno is set appropriately. Possible values for errno follow:

• EAGAIN: Non-blocking I/O has been selected using O_NONBLOCK and no data was
immediately available.

• EBADF: fd is not a valid descriptor.

• EINVAL: The /dev/cid file was not open for reading.

• EFAULT: buf is ouside the accessible address space.

• ETIME: Timeout during Caller ID detection.

Example readcount = read(fd, buf, 12);

This reads at most 12 bytes from file descriptor fd (assumed here to be related to /dev/cid),
and stores them in the memory location pointed to by buf.
24 AT75C1010
1786A–11/01

AT75C1010
Select Method

Synopsis #include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct
timeval *timeout);

Description Select waits for a number of file descriptors to change status. The main usage of select is to
check if Caller ID characters are available for read without having to actually read the data. In
particular, when the blocking operation is selected, it allows the user to know if a read access
will block or not. This is similar to a polling operation.

Two independent sets of descriptors are monitored. Those listed in readfds are watched to
see if characters become available for reading, and those in exceptfds are watched for excep-
tions. On exit, the sets are modified in place to indicate which descriptors actually changed
status.

Four macros are provided to manipulate the sets. FD_ZERO clears a set. FD_SET and
FD_CLR add or remove a given descriptor from a set. FD_ISSET tests to see if a descriptor is
part of the set; this is useful after select returns.

n is the highest-numbered descriptor in any of the two sets, plus 1.

timeout is an upper bound on the amount of time elapsed before select returns. It may be zero,
causing select to return immediately. If timeout is NULL (no timeout), select can block
indefinitely.

Return Values On success, select returns the number of descriptors contained in the descriptor sets, which
may be zero if the timeout expires before anything of interest happens. On error, -1 is
returned, and errno is set appropriately. The sets and timeout become undefined, so their con-
tents should not be relied on after an error.

Example fd_set rfds;

struct timeval tv;

int retval;

/* initialize file descriptor list*/

FD_ZERO(&rfds);

FD_SET(df, &rfds);

/* define delay */

tv.tv_sec = 5;

tv.tv_usec = 0;

retval = select(df+1, &rfds, NULL, NULL, &tv); //df supposed to be a file
descriptor related to /dev/cid

if (retval > 0)

printf("Caller ID data are available now.\n");

else

printf("No Caller ID data within 5 seconds.\n");

This checks during 5 second if Caller ID data is available or not.
25
1786A–11/01

Ioctl Method

Synopsis #include <sys/ioctl.h>

int ioctl(int fd, int request, char *argp);

The ioctl function manipulates the underlying device parameters of the Caller ID detector.
Additionally, the arbitrary tone generator is controlled through an ioctl request.

fd is the file descriptor upon which ioctl acts. It is related to the /dev/cid virtual file.

request defines which predefined command to send to the Caller ID device. Some commands
may require additional arguments which are stored or received in the buffer pointed to by argp.
The ioctl requests supported by the Caller ID device driver are described below:

• CALLER_ID_START: This command starts the Caller ID detection. An additional
parameter is used to select DTAS detection. Its type is unsigned short. This parameter is
defined in the Low-level Interface section of this document, See “Low-level Interface” on
page 6.

• CALLER_ID_STOP: This command is used to stop Caller ID detection. There is no
additional argument.

• CALLER_ID_CONFIG: This command is used to configure the characteristics of the
Caller ID detector. An additional parameter is used as defined below:
struct t_cid_args{

unsigned short caller_id_std;

unsigned short caller_id_dtas_ok;

unsigned short caller_id_dtas_length;

unsigned short caller_id_wcsz;

unsigned short caller_id_wms;

unsigned short caller_id_valid_ms;

unsigned short caller_id_timeout_char;

unsigned int caller_id_dtas_thres;

unsigned short caller_id_twist;

unsigned int caller_id_carrier_thres;

unsigned int caller_id_carrier_loss;

};

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 6.

TONE_GEN_CONFIG: This command is used to configure the characteristics of the arbitrary
tone signals. An additional parameter is used as defined below:

struct t_tone_gen_args{

unsigned short tone_cosw;

unsigned short tone_sinw;

unsigned short tone_level;

unsigned short tone_duration;

unsigned short silence_len;

unsigned short tone_start;

};

The fields and the values to be written are those defined in the section on “Low-level Interface”
on page 6.

TONE_GEN_START: This command is sent to start the generation of a tone immediately.
There is no additional argument.
26 AT75C1010
1786A–11/01

AT75C1010
TONE_GEN_STOP: This command is sent to stop the generation of a tone immediately.
There is no additional argument.

CALLER_ID_ACK_DIGIT: This command is sent to set the DTMF digit used to acknowledge
DTAS (type II). The argument is the decimal value of the DTMF digit cast to unsigned short.

Example struct t_cid_args{

unsigned short CALLER_ID_std;

unsigned short caller_id_dtas_ok;

unsigned short caller_id_dtas_length;

unsigned short caller_id_wcsz;

unsigned short caller_id_wms;

unsigned short caller_id_valid_ms;

unsigned short caller_id_timeout_char;

unsigned int caller_id_dtas_thres;

unsigned short caller_id_twist;

unsigned int caller_id_carrier_thres;

unsigned int caller_id_carrier_loss;

} * cid_det_args;

cid_det_args -> caller_id_std = 0; // V.23 ITU-T demodulation standard

cid_det_args -> caller_id_dtas_ok = 6; // hundredths of second

cid_det_args -> caller_id_dtas_length = 50; // hundredths of second

cid_det_args -> caller_id_wcsz = 200; // hundredths of second

cid_det_args -> caller_id_wms = 50; // hundredths of second

cid_det_args -> caller_id_ valid_ms = 3; // hundredths of second

cid_det_args -> caller_id_ timeout_char = 50; // hundredths of second

cid_det_args -> caller_id_ dtas_thres = 536870; // threshold of -30dB under
reference

cid_det_args -> caller_id_ twist = 16461; // twist between the two tones of -6dB
under reference

cid_det_args -> caller_id_ carrier_thres = 822083; // threshold for carrier
detection of -30dB under reference

cid_det_args -> caller_id_ carrier_loss = 412017; // threshold for carrier loss of
-30dB under reference

ioctl(fd, CALLER_ID_CONFIG, cid_det_args);

This configures the signal characteristics of the Caller ID detector for a standard operation.
27
1786A–11/01

Installation The installation of the AT75C1010 software is as follows:

Change directory to siap-uClinux-1.x.y/ and launch patch_AT75C1010. It carries out
the following actions:

• Add line.bin DSP binary in the prods/dk020/romdisk/romdisk/lib/ directory.

• Add teltest/ demo sources subdirectory in the apps/ directory.

• Add tel/ driver subdirectory in the linux/arch/armnommu/driver/ directory.

• Modify various configuration files.

After it ends, change directory to linux/ and type:
> make xconfig

This updates your configuration according to the file modifications. Verify that the “Telephony
tools” item is correctly set to “y”. Afterwards clean and rebuild your uClinux distribution.

Application
Example

Synopsis #include <asm/messages.h>

The demo application delivered with AT75C1010 driver illustrates its capabilities.

Starting DTMF
Generation

On the board type:
> teltest -dial 15

This opens the DTMF device, waits for a phone number of 15 digits from the keyboard and
dials it.

Starting Caller ID
Detection

On the board type:
> teltest -cidstart

This opens the Caller ID device, waits for Caller ID characters from the phone line and screens
the different parts of the message.
28 AT75C1010
1786A–11/01

© Atmel Corporation 2001.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Product Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-7658-3000
FAX (33) 4-7658-3480

Atmel Heilbronn
Theresienstrasse 2
POB 3535
D-74025 Heilbronn, Germany
TEL (49) 71 31 67 25 94
FAX (49) 71 31 67 24 23

Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 0 2 40 18 18 18
FAX (33) 0 2 40 18 19 60

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-4253-6000
FAX (33) 4-4253-6001

Atmel Smart Card ICs
Scottish Enterprise Technology Park
East Kilbride, Scotland G75 0QR
TEL (44) 1355-357-000
FAX (44) 1355-242-743

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

 Printed on recycled paper.

Atmel® is the registered trademark of Atmel; SIAP™ is the trademark of Atmel.

ARM® and ARM7TDMI® are registered trademarks of ARM Ltd.; OakDSPCore® is a registered trademark of
DSP Group Inc.; uClinux® is the registered trademark of Lineo Inc. Other terms and product names may be the
trademarks of others.

1786A–11/01/0M

	Features
	Description
	Functional Description
	DTMF Generator
	DTMF Detector
	Tone Generator
	Caller ID Decoder

	Low-level Interface
	Telephony Program Upload
	Upload Process
	Binary Image Format

	DPMB Configuration
	Mailbox Access
	ARM to Oak Mailboxes
	Oak to ARM Mailboxes

	Mailbox Usage
	Mailbox 2: Oak Memory Access
	Mailbox 6: Request Notification
	Mailbox 7: Status Notification

	Oak Memory Access
	Request Notification Messages
	Tone Generation Configuration Request
	Tone Generation Start Request
	Tone Generation Stop Request
	DTMF Generation Configuration Request
	DTMF Generation Start Request
	Digit Codes of DTMF Tones

	DTMF Generation Stop Request
	DTMF Detection Configuration Request
	DTMF Detection Start Request
	DTMF Detection Stop Request
	Caller ID Configuration Request
	Caller ID Start Request
	Caller ID Stop Request

	Status Notification Messages
	Telephony Module Initialization Status
	Bad Format Status
	Unknown Request Status
	Bad Parameter Status
	Tone Generation Status
	DTMF Generation Status
	DTMF Detection Status
	Caller ID Exit Status
	DTAS Detected Status
	Received Character Status

	AT75C1010 Device Driver
	DTMF Driver Operations
	Open Method
	Synopsis
	Description
	Return Values
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Write Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	Ioctl Method
	Synopsis
	Description
	Example

	Caller ID Driver Operations
	Open Method
	Synopsis
	Description
	Example

	Close Method
	Synopsis
	Description
	Return Values
	Example

	Read Method
	Synopsis
	Description
	Return Values
	Example

	Select Method
	Synopsis
	Description
	Return Values
	Example

	Ioctl Method
	Synopsis
	Example

	Installation
	Application Example
	Synopsis
	Starting DTMF Generation
	Starting Caller ID Detection

